首页>>人工智能->早期人类如何研究人工智能(人工智能研究中最早使用的方法)

早期人类如何研究人工智能(人工智能研究中最早使用的方法)

时间:2023-12-21 本站 点击:0

导读:本篇文章首席CTO笔记来给大家介绍有关早期人类如何研究人工智能的相关内容,希望对大家有所帮助,一起来看看吧。

人工智能的发展历程

人工智能的发展历程划分为以下6个阶段:

一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。

二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空,使人工智能的发展走入低谷。

三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。

四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。

五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。

六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”。

现状与影响

对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶等等。

这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。

专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。

人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。

以上内容参考 工信部-人工智能的历史、现状和未来

基础篇:问题1.人工智能的发展简史是怎样的?1936-1969(1/3)

点击收听课程音频

  在我们开始探讨人工智能的相关问题之前,还是先简单回顾一下人工智能发展简史。

一、人工智能的诞生(20世纪三十~五十年代)

    人工智能的概念最早是由约翰·麦卡锡(John McCarthy)在1956年著名的达特矛斯会议(Dartmouth Conference)上提出: 人工智能是指让机器的行为看起来就象是人类所表现出的智能行为一样。 因为社会在不断进步和发展,所以对新技术的认知不可避免存在时空的局限性。人工智能这个定义在六十年后再往回看,已经被赋予了更多新的内容, 个别领域的人工智能应用已经不仅仅是象人类行为一样,甚至已经超越了人类,更快速、更准确、更强大。

 这个定义强调人工智能是人造机器,所“表现”出来一定的智能性也就是 弱人工智能 。主流科学研究也是集中在弱人工智能上,并且取得可观的成就。那既然说到了弱人工智能,就不得说与之对应的另一个分类就是强人工智能。   

       强人工智能一般观点认为: 人类有可能制造出真正能推理和解决问题的智能机器 ,具有以下几种特征:

1、机器有知觉和自我意识;2、机器可以独立思考问题并制定解决问题的最优方案; 3、有自己的价值观和世界观体系; 4、有和生物一样的各种本能,比如生存和安全需求; 5、在某种意义上可以看作一种新的文明。

 比如在好莱坞出品的人工智能的题材科幻电影中,很多机器人都表现出了很强的学习认知能力以及自我意识,这样的人工智能就可以认为属于强人工智能。但遗憾的是当前我们科技发展水平还没有能力创造任何种类的强人工智能。还有 弱人工智能与强人工智能并不是发展阶段的关系,弱人工智能不一定能发展为强人工智能,二者发展路径与理念存在根本的不同。

    让我们来回顾一下在人工智能诞生时期的伟大历史事件:

         1936年,数学家 阿隆佐·邱奇 (Alonzo Churc) 和艾伦·图灵 ( Alan Turing) 命名邱奇-图灵论题,提出 所有计算或算法都可以由一台图灵机来执行,这也是构建计算机科学的基础之一。 图灵这个人相信大家都有了解了,二战时发明了解码机破解了德国人密码,改变了战争的进程。并且他发表的图灵计算机论文也是现代计算机的原型。他把生物的进化也看做是一种程序,也就是图灵机的基本概念,一切都是数学公式的表达,然后按程序进行。

        1943年, 沃伦 · 麦卡洛克 (WarrenMcCulloch) 和沃尔特 · 皮茨 (WalterPitts) 两位科学家提出了 “ 神经网络 ” 的概念,正式开启了 AI 的大门。 虽然在当时仅是一个数学理论,但有着极其深远的影响,因为这个理论让人们了解到计算机可以如人类大脑一样进行“深度学习”,描述了人造神经元网络如何实现逻辑功能。

        1945年博弈论的创立者 冯·诺依曼(John.Von.N eumann)提出了存储程序的概念,在计算机领域建立了不朽的功勋。 他的这一思想被誉为电子计算机时代的开始。到今天计算机的体系结构还基本上是冯 · 诺依曼型。

1946年2月14日情人节那天,基于 图灵和冯 · 诺伊曼 学说,计算机的先驱者莫克利(J.W.Mauchly)与他的研究生埃克特(J.P.Eckert)在美国合作研发了世界上第一台通用计算机, 这 是现代计算机发展史上重要的里程碑,也 为人工智能的出现奠定了硬件基础。

        1947年,神经学的研究发现大脑结构是由神经元组成的电子网络,其电平只存在“有”和“无”两种状态,不存在中间状态,这也是人类研究大脑结构的重大成果。

         1948年,计算机时代刚刚进入黎明时, 诺伯特  ·  维纳 ( Norbert Wiener)  就提出了一种“控制论”的概念。他是最先预见到信息技术双重可能性的人,这把双刃剑可能也逃离人类掌控并反过来控制人类。他也成为了最早对机器智能的到来提出批判的学者。

         1950 年,图灵发表了一篇划时代的论文,预言了创造出具有真正智能的机器的可能性。 图灵测试是人工智能哲学方面第一个严肃的提案。著名的图灵测试诞生: 如果一台机器能够与人类 ( 通过电子设备 ) 展开间接对话而不能被辨别出其机器身份,那么称这台机器具有智能。 他也因此被誉为“人工智能之父”。同一年,图灵还预言了人类将会创造出具有真正智能的机器的可能性。

1951年, 克 里斯托弗  ·  斯特雷奇 (ChristopherStrachey) 使用写出了一个西洋跳棋程序; 迪特里希  ·  普林茨 (DietrichPrinz) 写出了一个国际象棋程序。 从这开始游戏 AI 就一直被当做评价 AI 发展水平的标准。

        1955 年,艾伦·纽厄尔 (Allen Newell) 和赫伯特 · 西蒙 (Herbert Simon) 在 J. C.  肖 的协助下开发了“逻辑理论家”。这个程序通过模拟人证明符号逻辑定理的思维活动,证明《数学原理》中的38个定理,其中某些证明比原著更加简明合理。

1956 年,人工智能诞生 马文· 明斯基 (Marvin Minsky) 与 约翰· 麦卡锡 (John McCarthy) 、克劳德· 香农 (Claude Shannon) 等人一起在美国达特茅斯学院发起并组织“达特茅斯会议”,麦卡锡首次提出了“人工智能”这个概念,纽厄尔和西蒙则展示了编写的“逻辑理论家”。会议上AI的名称和任务得以确定,同时出现了最初的成就和最早的一批研究者,因此这一事件被广泛认为是AI诞生的标志,被誉为“人工智能的起点”。

        1956 年乔治  ·  戴沃尔戴沃尔  (Ge orge Devol ) 与约瑟夫 · 恩格尔博格 ( Joseph F·Engelberger ) , 创建了世界上第一家机器人公司,名为“尤尼梅新”。

        1956 年,奥利弗·萨尔夫瑞德 (Oliver Selfridge) 研制出第一个字符识别程序,开辟了模式识别这一新的领域。

            1957年, 艾伦·纽厄尔 (Allen Newell) 和 赫伯特 · 西蒙 (Herbert Simon) 等人开始研究一种不依赖于具体领域的通用问题求解器,他们称之为GPS(General Problem Solver),这一时期,搜索式推理是许多AI程序使用相同的基本算法。原理就像在迷宫中寻找出路一般;如果遇到了死胡同则进行回溯选择其他分支路径往前,这就是“搜索式推理”。这算法主要困难是在很多问题中,线路总数的可能性是一个天文数字。

        1958年,美国国防部先进研究项目局(Defense Advanced ResearchProjects Agency)成立,主要负责高新技术的研究、开发和应用。几十年来DARPA已为美军研发成功了大量的先进武器系统,同时为美国积累了大量的科技资源储备,并且引领着美国乃至世界军民高技术研发的潮流。

总结一下,最初的人工智能研究是20世纪30年代末到50年代初的一系列科学研究成果交汇的创新的产物。在这些领域的顶级研究人员本身也是多学科跨界的专家,因此需要集各家所长的人工智能,才得以快速发展,其中主要的几个学科成果是:

1、神经学研究发现神经网络;2、维纳的控制论描述了电子网络研究3、香农信息论的数字信号研究;4、图灵的计算理论证明数字信号可以描述任何形式的计算,5、冯·诺依曼提出了存储程序的概念,这些密切相关的想法融合在一起,展现了构建一个电子大脑的可能性,研究如何用机器来模拟人类智能的学科产生了。

二、人工智能逻辑推理时期 (20世纪六十年代)

        在这一时期,一般认为只要机器被赋予了逻辑推理能力就可以实现人工智能。 不过此后人们失望的发现,制造出来的机器仅仅具备了基本的逻辑推理能力,还远远达不到“智能”的水平。

    早在1958年, 约翰· 麦卡锡 (John McCarthy) 提出了“纳谏者”的程序构想,将逻辑学引入了AI研究界。到了六十年代末麦卡锡和他的学生们发现,实现这一想法运算复杂度极高:即便是证明很简单的定理也需要天文数字的运算步骤。此时,麦卡锡认为,人类怎么思考是无关紧要的:真正的目标应该是解决问题的机器,而不是模仿人类进行思考的机器。因此麦卡锡等人一派也被称为“简约派”。

这一时期的重大事件有:

        1962年,创立6年时间的公司 “尤尼梅特” , 推出了世界上首款工业机器人“尤尼梅特”, 开始在通用汽车公司的装配线上服役。

        1963年6月,麻省理工学院MIT从DARPA,国防部先进研究项目局获得经费资助,其中包括 马文· 明斯基 (MarvinMinsky) 和麦卡锡 (John McCarthy) 五年前建立的 AI 研究组。 此后DARPA每年提供三百万美元,直到七十年代为止。

        1966年到1972年间,美国斯坦福国际研究所(SRI)研制了具备一定人工智能移动式机器人Shakey,,它能够自主进行感知、环境建模、行为规划并执行任务(如寻找木箱并将其推到指定目的位置)。这是首台采用了人工智能学的移动机器人,引发了人工智能早期研究工作爆发。

        1966 年, MIT 的系统工程师约瑟夫·魏泽堡 (Joseph Weizenbaum 和精神病学家   肯尼思·科尔比 (Kenneth Colby) 发布了世界上第一个聊天机器人艾丽莎 Eliza 。智能之处在于她能通过脚本“理解”简单的自然语言,并能产生类似人类的互动。而其中最著名的脚本便是模拟罗吉斯心理治疗师的Doctor。作为最早的有情感人工智能机器,可以帮助用户和机器进行对话,缓解压力和抑郁,同时这也是人工智能语音助手最早的雏形。

        1968年12,加州斯坦福研究所的 道格·恩格勒巴特  ( Douglas C. Engelbart) 发明了鼠标,被誉为“鼠标之父”。 如果你认为发明鼠标已经很厉害的话,那他还有个更厉害发明,正是他提出了超链接概念,而超链接原理几十年后成了现代互联网的根基。他关于人工智能发展的理念是提倡“智能增强”而非取代人类。

     了解最新课程内容,点击 原文链接 或者搜索"知识星球"小程序,在里面搜索“人工智能进化论”订阅课程,加入圈子讨论或者向作者提问。 或者加wx:AI61825

人工智能的发展简史

人工智能的传说可以追溯到古埃及,但随着1941年以来电子计算机的发展,技术已最终可以创造出机器智能,“人工智能”(ARTIFICIAL INTELLIGENCE)一词最初是在1956年DARTMOUTH学会上提出的,从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展,在它还不长的历史中,人工智能的发展比预想的要慢,但一直在前进,从40年前出现至今,已经出现了许多AI程序,并且它们也影响到了其它 技术的发展。 1941年的一项发明使信息存储和处理的各个方面都发生了革命.这项同时在美国和德国出现的 发明就是电子计算机.第一台计算机要占用几间装空调的大房间,对程序员来说是场噩梦:仅仅为运行一 个程序就要设置成千的线路.1949年改进后的能存储程序的计算机使得输入程序变得简单些,而且计算机 理论的发展产生了计算机科学,并最终促使了人工智能的出现.计算机这个用电子方式处理数据的发明,为人工智能的可能实现提供了一种媒介.

虽然计算机为AI提供了必要的技术基础,但直到50年代早期人们才注意到人类智能与机器之间 的联系. NORBERT WIENER是最早研究反馈理论的美国人之一.最熟悉的反馈控制的例子是自动调温器.它 将收集到的房间温度与希望的温度比较,并做出反应将加热器开大或关小,从而控制环境温度.这项对反馈 回路的研究重要性在于:WIENER从理论上指出,所有的智能活动都是反馈机制的结果.而反馈机制是有可 能用机器模拟的.这项发现对早期AI的发展影响很大.

1955年末,NEWELL和SIMON做了一个名为逻辑专家(LOGIC THEORIST)的程序.这个程序被许多人 认为是第一个AI程序.它将每个问题都表示成一个树形模型,然后选择最可能得到正确结论的那一枝来求解 问题.逻辑专家对公众和AI研究领域产生的影响使它成为AI发展中一个重要的里程碑.1956年,被认为是 人工智能之父的JOHN MCCARTHY组织了一次学会,将许多对机器智能感兴趣的专家学者聚集在一起进行了一 个月的讨论.他请他们到 VERMONT参加 DARTMOUTH人工智能夏季研究会.从那时起,这个领域被命名为 人工智能.虽然 DARTMOUTH学会不是非常成功,但它确实集中了AI的创立者们,并为以后的AI研究奠定了基础.

DARTMOUTH会议后的7年中,AI研究开始快速发展.虽然这个领域还没明确定义,会议中的一些思想 已被重新考虑和使用了. CARNEGIE MELLON大学和MIT开始组建AI研究中心.研究面临新的挑战:下一步需 要建立能够更有效解决问题的系统,例如在逻辑专家中减少搜索;还有就是建立可以自我学习的系统.

1957年一个新程序,通用解题机(GPS)的第一个版本进行了测试.这个程序是由制作逻辑专家 的同一个组开发的.GPS扩展了WIENER的反馈原理,可以解决很多常识问题.两年以后,IBM成立了一个AI研 究组.HERBERT GELERNETER花3年时间制作了一个解几何定理的程序.

当越来越多的程序涌现时,MCCARTHY正忙于一个AI史上的突破.1958年MCCARTHY宣布了他的新成 果:LISP语言. LISP到今天还在用.LISP的意思是表处理(LIST PROCESSING),它很快就为大多数AI开发者采纳.

1963年MIT从美国政府得到一笔220万美元的资助,用于研究机器辅助识别.这笔资助来自国防部 高级研究计划署(ARPA),已保证美国在技术进步上领先于苏联.这个计划吸引了来自全世界的计算机科学家,加快了AI研究的发展步伐. LOEBNER(人工智能类)

以人类的智慧创造出堪与人类大脑相平行的机器脑(人工智能),对人类来说是一个极具诱惑的领域,人类为了实现这一梦想也已经奋斗了很多个年头了。而从一个语言研究者的角度来看,要让机器与人之间自由交流那是相当困难的,甚至可以说可能会是一个永无答案的问题。人类的语言,人类的智能是如此的复杂,以至于我们的研究还并未触及其导向本质的外延部分的边沿。 以后几年出现了大量程序.其中一个著名的叫SHRDLU.SHRDLU是微型世界项目的一部分,包括 在微型世界(例如只有有限数量的几何形体)中的研究与编程.在MIT由MARVIN MINSKY领导的研究人员发现,面对小规模的对象,计算机程序可以解决空间和逻辑问题.其它如在60年代末出现的STUDENT可以解决代数 问题,SIR可以理解简单的英语句子.这些程序的结果对处理语言理解和逻辑有所帮助.

70年代另一个进展是专家系统.专家系统可以预测在一定条件下某种解的概率.由于当时计算机已 有巨大容量,专家系统有可能从数据中得出规律.专家系统的市场应用很广.十年间,专家系统被用于股市预 测,帮助医生诊断疾病,以及指示矿工确定矿藏位置等.这一切都因为专家系统存储规律和信息的能力而成为可能.

70年代许多新方法被用于AI开发,著名的如MINSKY的构造理论.另外DAVID MARR提出了机器视觉方 面的新理论,例如,如何通过一副图像的阴影,形状,颜色,边界和纹理等基本信息辨别图像.通过分析这些信 息,可以推断出图像可能是什么.同时期另一项成果是PROLOGE语言,于1972年提出. 80年代期间,AI前进更为迅速,并更多地进入商业领域.1986年,美国AI相关软硬件销售高达4.25亿 美元.专家系统因其效用尤受需求.象数字电气公司这样的公司用XCON专家系统为VAX大型机编程.杜邦,通用 汽车公司和波音公司也大量依赖专家系统.为满足计算机专家的需要,一些生产专家系统辅助制作软件的公 司,如TEKNOWLEDGE和INTELLICORP成立了。为了查找和改正现有专家系统中的错误,又有另外一些专家系统被设计出来. 人们开始感受到计算机和人工智能技术的影响.计算机技术不再只属于实验室中的一小群研究人员. 个人电脑和众多技术杂志使计算机技术展现在人们面前.有了像美国人工智能协会这样的基金会.因为AI开发 的需要,还出现了一阵研究人员进入私人公司的热潮。150多所像DEC(它雇了700多员工从事AI研究)这样的公司共花了10亿美元在内部的AI开发组上.

其它AI领域也在80年代进入市场.其中一项就是机器视觉. MINSKY和MARR的成果如今用到了生产线上的相机和计算机中,进行质量控制.尽管还很简陋,这些系统已能够通过黑白区别分辨出物件形状的不同.到1985年美国有一百多个公司生产机器视觉系统,销售额共达8千万美元.

但80年代对AI工业来说也不全是好年景.86-87年对AI系统的需求下降,业界损失了近5亿美元.象 TEKNOWLEDGE和INTELLICORP两家共损失超过6百万美元,大约占利润的三分之一巨大的损失迫使许多研究领 导者削减经费.另一个令人失望的是国防部高级研究计划署支持的所谓智能卡车.这个项目目的是研制一种能完成许多战地任务的机器人。由于项目缺陷和成功无望,PENTAGON停止了项目的经费.

尽管经历了这些受挫的事件,AI仍在慢慢恢复发展.新的技术在日本被开发出来,如在美国首创的模糊逻辑,它可以从不确定的条件作出决策;还有神经网络,被视为实现人工智能的可能途径.总之,80年代AI被引入了市场,并显示出实用价值.可以确信,它将是通向21世纪之匙. 人工智能技术接受检验 在沙漠风暴行动中军方的智能设备经受了战争的检验.人工智能技术被用于导弹系统和预警显示以 及其它先进武器.AI技术也进入了家庭.智能电脑的增加吸引了公众兴趣;一些面向苹果机和IBM兼容机的应用 软件例如语音和文字识别已可买到;使用模糊逻辑,AI技术简化了摄像设备.对人工智能相关技术更大的需求促 使新的进步不断出现.人工智能已经并且将继续不可避免地改变我们的生活。 人工智能的一个比较流行的定义,也是该领域较早的定义,是由约翰·麦卡锡(JOHN MCCARTHY)在1956年的达特矛斯会议(DARTMOUTH CONFERENCE)上提出的:人工智能就是要让机器的行为看起来就象是人所表现出的智能行为一样。但是这个定义似乎忽略了强人工智能的可能性(见下)。另一个定义指人工智能是人造机器所表现出来的智能性。总体来讲,对人工智能的定义大多可划分为四类,即机器“像人一样思考”、“像人一样行动”、“理性地思考”和“理性地行动”。这里“行动”应广义地理解为采取行动,或制定行动的决策,而不是肢体动作。

强人工智能(BOTTOM-UP AI)

强人工智能观点认为有可能制造出真正能推理(REASONING)和解决问题(PROBLEM_SOLVING)的智能机器,并且,这样的机器能将被认为是有知觉的,有自我意识的。强人工智能可以有两类:

类人的人工智能,即机器的思考和推理就像人的思维一样。

非类人的人工智能,即机器产生了和人完全不一样的知觉和意识,使用和人完全不一样的推理方式。

弱人工智能(TOP-DOWN AI)

弱人工智能观点认为不可能制造出能真正地推理(REASONING)和解决问题(PROBLEM_SOLVING)的智能机器,这些机器只不过看起来像是智能的,但是并不真正拥有智能,也不会有自主意识。

主流科研集中在弱人工智能上,并且一般认为这一研究领域已经取得可观的成就。强人工智能的研究则处于停滞不前的状态下。

对强人工智能的哲学争论

“强人工智能”一词最初是约翰·罗杰斯·希尔勒针对计算机和其它信息处理机器创造的,其定义为:

“强人工智能观点认为计算机不仅是用来研究人的思维的一种工具;相反,只要运行适当的程序,计算机本身就是有思维的。”(J SEARLE IN MINDS BRAINS AND PROGRAMS. THE BEHAVIORAL AND BRAIN SCIENCES,VOL. 3,1980)这是指使计算机从事智能的活动。在这里智能的涵义是多义的、不确定的,像下面所提到的就是其中的例子。利用计算机解决问题时,必须知道明确的程序。可是,人即使在不清楚程序时,根据发现(HEU- RISTIC)法而设法巧妙的解决了问题的情况是不少的。如识别书写的文字、图形、声音等,所谓认识模型就是一例。再有,能力因学习而得到的提高和归纳推理、依据类推而进行的推理等,也是其例。此外,解决的程序虽然是清楚的,但是实行起来需要很长时间,对于这样的问题,人能在很短的时间内找出相当好的解决方法,如竞技的比赛等就是其例。还有,计算机在没有给予充分的合乎逻辑的正确信息时,就不能理解它的意义,而人在仅是被给予不充分、不正确的信息的情况下,根据适当的补充信息,也能抓住它的意义。自然语言就是例子。用计算机处理自然语言,称为自然语言处理。

关于强人工智能的争论不同于更广义的一元论和二元论(DUALISM)的争论。其争论要点是:如果一台机器的唯一工作原理就是对编码数据进行转换,那么这台机器是不是有思维的?希尔勒认为这是不可能的。他举了个中文房间的例子来说明,如果机器仅仅是对数据进行转换,而数据本身是对某些事情的一种编码表现,那么在不理解这一编码和这实际事情之间的对应关系的前提下,机器不可能对其处理的数据有任何理解。基于这一论点,希尔勒认为即使有机器通过了图灵测试,也不一定说明机器就真的像人一样有思维和意识。

也有哲学家持不同的观点。DANIEL C. DENNETT 在其著作 CONSCIOUSNESS EXPLAINED 里认为,人也不过是一台有灵魂的机器而已,为什么我们认为人可以有智能而普通机器就不能呢?他认为像上述的数据转换机器是有可能有思维和意识的。

有的哲学家认为如果弱人工智能是可实现的,那么强人工智能也是可实现的。比如SIMON BLACKBURN在其哲学入门教材 THINK 里说道,一个人的看起来是“智能”的行动并不能真正说明这个人就真的是智能的。我永远不可能知道另一个人是否真的像我一样是智能的,还是说她/他仅仅是看起来是智能的。基于这个论点,既然弱人工智能认为可以令机器看起来像是智能的,那就不能完全否定这机器是真的有智能的。BLACKBURN 认为这是一个主观认定的问题。

需要要指出的是,弱人工智能并非和强人工智能完全对立,也就是说,即使强人工智能是可能的,弱人工智能仍然是有意义的。至少,今日的计算机能做的事,像算术运算等,在百多年前是被认为很需要智能的。

人工智能的技术研究

用来研究人工智能的主要物质基础以及能够实现人工智能技术平台的机器就是计算机,人工智能的发展历史是和计算机科学技术的发展史联系在一起的。除了计算机科学以外,人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。 如今没有统一的原理或范式指导人工智能研究。许多问题上研究者都存在争论。其中几个长久以来仍没有结论的问题是:是否应从心理或神经方面模拟人工智能?或者像鸟类生物学对于航空工程一样,人类生物学对于人工智能研究是没有关系的?智能行为能否用简单的原则(如逻辑或优化)来描述?还是必须解决大量完全无关的问题?

智能是否可以使用高级符号表达,如词和想法?还是需要“子符号”的处理?JOHN HAUGELAND提出了GOFAI(出色的老式人工智能)的概念,也提议人工智能应归类为SYNTHETIC INTELLIGENCE,[29]这个概念后来被某些非GOFAI研究者采纳。

大脑模拟

主条目:控制论和计算神经科学

20世纪40年代到50年代,许多研究者探索神经病学,信息理论及控制论之间的联系。其中还造出一些使用电子网络构造的初步智能,如W. GREY WALTER的TURTLES和JOHNS HOPKINS BEAST。 这些研究者还经常在普林斯顿大学和英国的RATIO CLUB举行技术协会会议.直到1960, 大部分人已经放弃这个方法,尽管在80年代再次提出这些原理。

符号处理

主条目:GOFAI

当20世纪50年代,数字计算机研制成功,研究者开始探索人类智能是否能简化成符号处理。研究主要集中在卡内基梅隆大学, 斯坦福大学和麻省理工学院,而各自有独立的研究风格。JOHN HAUGELAND称这些方法为GOFAI(出色的老式人工智能)。[33] 60年代,符号方法在小型证明程序上模拟高级思考有很大的成就。基于控制论或神经网络的方法则置于次要。[34] 60~70年代的研究者确信符号方法最终可以成功创造强人工智能的机器,同时这也是他们的目标。

认知模拟经济学家赫伯特·西蒙和艾伦·纽厄尔研究人类问题解决能力和尝试将其形式化,同时他们为人工智能的基本原理打下基础,如认知科学, 运筹学和经营科学。他们的研究团队使用心理学实验的结果开发模拟人类解决问题方法的程序。这方法一直在卡内基梅隆大学沿袭下来,并在80年代于SOAR发展到高峰。基于逻辑不像艾伦·纽厄尔和赫伯特·西蒙,JOHN MCCARTHY认为机器不需要模拟人类的思想,而应尝试找到抽象推理和解决问题的本质,不管人们是否使用同样的算法。他在斯坦福大学的实验室致力于使用形式化逻辑解决多种问题,包括知识表示, 智能规划和机器学习. 致力于逻辑方法的还有爱丁堡大学,而促成欧洲的其他地方开发编程语言PROLOG和逻辑编程科学.“反逻辑”斯坦福大学的研究者 (如马文·闵斯基和西摩尔·派普特)发现要解决计算机视觉和自然语言处理的困难问题,需要专门的方案-他们主张不存在简单和通用原理(如逻辑)能够达到所有的智能行为。ROGER SCHANK 描述他们的“反逻辑”方法为 SCRUFFY .常识知识库 (如DOUG LENAT的CYC)就是SCRUFFYAI的例子,因为他们必须人工一次编写一个复杂的概念。基于知识大约在1970年出现大容量内存计算机,研究者分别以三个方法开始把知识构造成应用软件。这场“知识革命”促成专家系统的开发与计划,这是第一个成功的人工智能软件形式。“知识革命”同时让人们意识到许多简单的人工智能软件可能需要大量的知识。

子符号法

80年代符号人工智能停滞不前,很多人认为符号系统永远不可能模仿人类所有的认知过程,特别是感知,机器人,机器学习和模式识别。很多研究者开始关注子符号方法解决特定的人工智能问题。

自下而上, 接口AGENT,嵌入环境(机器人),行为主义,新式AI机器人领域相关的研究者,如RODNEY BROOKS,否定符号人工智能而专注于机器人移动和求生等基本的工程问题。他们的工作再次关注早期控制论研究者的观点,同时提出了在人工智能中使用控制理论。这与认知科学领域中的表征感知论点是一致的:更高的智能需要个体的表征(如移动,感知和形象)。计算智能80年代中DAVID RUMELHART 等再次提出神经网络和联结主义. 这和其他的子符号方法,如模糊控制和进化计算,都属于计算智能学科研究范畴。

统计学法

90年代,人工智能研究发展出复杂的数学工具来解决特定的分支问题。这些工具是真正的科学方法,即这些方法的结果是可测量的和可验证的,同时也是人工智能成功的原因。共用的数学语言也允许已有学科的合作(如数学,经济或运筹学)。STUART J. RUSSELL和PETER NORVIG指出这些进步不亚于“革命”和“NEATS的成功”。有人批评这些技术太专注于特定的问题,而没有考虑长远的强人工智能目标。

集成方法

智能AGENT范式智能AGENT是一个会感知环境并作出行动以达致目标的系统。最简单的智能AGENT是那些可以解决特定问题的程序。更复杂的AGENT包括人类和人类组织(如公司)。这些范式可以让研究者研究单独的问题和找出有用且可验证的方案,而不需考虑单一的方法。一个解决特定问题的AGENT可以使用任何可行的方法-一些AGENT用符号方法和逻辑方法,一些则是子符号神经网络或其他新的方法。范式同时也给研究者提供一个与其他领域沟通的共同语言--如决策论和经济学(也使用ABSTRACT AGENTS的概念)。90年代智能AGENT范式被广泛接受。AGENT体系结构和认知体系结构研究者设计出一些系统来处理多ANGENT系统中智能AGENT之间的相互作用。一个系统中包含符号和子符号部分的系统称为混合智能系统 ,而对这种系统的研究则是人工智能系统集成。分级控制系统则给反应级别的子符号AI 和最高级别的传统符号AI提供桥梁,同时放宽了规划和世界建模的时间。RODNEY BROOKS的SUBSUMPTION ARCHITECTURE就是一个早期的分级系统计划。 机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。

值得一提的是,机器翻译是人工智能的重要分支和最先应用领域。不过就已有的机译成就来看,机译系统的译文质量离终极目标仍相差甚远;而机译质量是机译系统成败的关键。中国数学家、语言学家周海中教授曾在论文《机器翻译五十年》中指出:要提高机译的质量,首先要解决的是语言本身问题而不是程序设计问题;单靠若干程序来做机译系统,肯定是无法提高机译质量的;另外在人类尚未明了大脑是如何进行语言的模糊识别和逻辑判断的情况下,机译要想达到“信、达、雅”的程度是不可能的。 ⒈ MASSACHUSETTS INSTITUTE OF TECHNOLOGY麻省理工学院

⒉ STANFORD UNIVERSITY斯坦福大学(CA)

⒊ CARNEGIE MELLON UNIVERSITY卡内基美隆大学(PA)

⒋ UNIVERSITY OF CALIFORNIA-BERKELEY加州大学伯克利分校

⒌ UNIVERSITY OF WASHINGTON华盛顿大学

⒍ UNIVERSITY OF TEXAS-AUSTIN德克萨斯大学奥斯汀分校

⒎ UNIVERSITY OF PENNSYLVANIA宾夕法尼亚大学

⒏ UNIVERSITY OF ILLINOIS-URBANA-CHAMPAIGN 伊利诺伊大学厄本那—香槟分校

⒐ UNIVERSITY OF MARYLAND-COLLEGE PARK马里兰大学帕克分校

⒑ CORNELL UNIVERSITY 康奈尔大学 (NY)

⒒ UNIVERSITY OF MASSACHUSETTS-AMHERST马萨诸塞大学AMHERST校区

⒓ GEORGIA INSTITUTE OF TECHNOLOGY佐治亚理工学院

UNIVERSITY OF MICHIGAN-ANN ARBOR 密西根大学-安娜堡分校

⒕ UNIVERSITY OF SOUTHERN CALIFORNIA南加州大学

⒖ COLUMBIA UNIVERSITY哥伦比亚大学(NY)

UNIVERSITY OF CALIFORNIA-LOS ANGELES加州大学洛杉矶分校

⒘ BROWN UNIVERSITY布朗大学(RI)

⒙ YALE UNIVERSITY耶鲁大学(CT)

⒚ UNIVERSITY OF CALIFORNIA-SAN DIEGO加利福尼亚大学圣地亚哥分校

⒛ UNIVERSITY OF WISCONSIN-MADISON威斯康星大学麦迪逊分校 1、中国科学院自动化研究所

2、清华大学

3、北京大学

4、南京理工大学

5、北京科技大学

6、中国科学技术大学

7、吉林大学

8、哈尔滨工业大学

9、北京邮电大学

10、北京理工大学

11、厦门大学人工智能研究所

12、西安交通大学智能车研究所

13、中南大学智能系统与智能软件研究所

14、西安电子科技大学智能所

15、华中科技大学图像与人工智能研究所

16、重庆邮电大学

17、武汉工程大学

人工智能的发展,主要经历哪几个阶段?

1 孕育阶段

这个阶段主要是指1956年以前。自古以来,人们就一直试图用各种机器来代替人的部分脑力劳动,以提高人们征服自然的能力,其中对人工智能的产生、发展有重大影响的主要研究成果包括:

早在公元前384-公元前322年,伟大的哲学家亚里士多德(Aristotle)就在他的名著《工具论》中提出了形式逻辑的一些主要定律,他提出的三段论至今仍是演绎推理的基本依据。

英国哲学家培根(F. Bacon)曾系统地提出了归纳法,还提出了“知识就是力量”的警句。这对于研究人类的思维过程,以及自20世纪70年代人工智能转向以知识为中心的研究都产生了重要影响。

德国数学家和哲学家莱布尼茨(G. W. Leibniz)提出了万能符号和推理计算的思想,他认为可以建立一种通用的符号语言以及在此符号语言上进行推理的演算。这一思想不仅为数理逻辑的产生和发展奠定了基础,而且是现代机器思维设计思想的萌芽。

英国逻辑学家布尔(C. Boole)致力于使思维规律形式化和实现机械化,并创立了布尔代数。他在《思维法则》一书中首次用符号语言描述了思维活动的基本推理法则。

英国数学家图灵(A. M. Turing)在1936年提出了一种理想计算机的数学模型,即图灵机,为后来电子数字计算机的问世奠定了理论基础。

美国神经生理学家麦克洛奇(W. McCulloch)与匹兹(W. Pitts)在1943年建成了第一个神经网络模型(M-P模型),开创了微观人工智能的研究领域,为后来人工神经网络的研究奠定了基础。

美国爱荷华州立大学的阿塔纳索夫(Atanasoff)教授和他的研究生贝瑞(Berry)在1937年至1941年间开发的世界上第一台电子计算机“阿塔纳索夫-贝瑞计算机(Atanasoff-Berry Computer,ABC)”为人工智能的研究奠定了物质基础。需要说明的是:世界上第一台计算机不是许多书上所说的由美国的莫克利和埃柯特在1946年发明。这是美国历史上一桩著名的公案。

由上面的发展过程可以看出,人工智能的产生和发展绝不是偶然的,它是科学技术发展的必然产物。

2 形成阶段

这个阶段主要是指1956-1969年。1956年夏季,由当时达特茅斯大学的年轻数学助教、现任斯坦福大学教授麦卡锡(J. MeCarthy)联合哈佛大学年轻数学和神经学家、麻省理工学院教授明斯基(M. L. Minsky),IBM公司信息研究中心负责人洛切斯特(N. Rochester),贝尔实验室信息部数学研究员香农(C. E. Shannon)共同发起,邀请普林斯顿大学的莫尔(T.Moore)和IBM公司的塞缪尔(A. L. Samuel)、麻省理工学院的塞尔夫里奇(O. Selfridge)和索罗莫夫(R. Solomonff)以及兰德(RAND)公司和卡内基梅隆大学的纽厄尔(A. Newell)、西蒙(H. A. Simon)等在美国达特茅斯大学召开了一次为时两个月的学术研讨会,讨论关于机器智能的问题。会上经麦卡锡提议正式采用了“人工智能”这一术语。麦卡锡因而被称为人工智能之父。这是一次具有历史意义的重要会议,它标志着人工智能作为一门新兴学科正式诞生了。此后,美国形成了多个人工智能研究组织,如纽厄尔和西蒙的Carnegie-RAND协作组,明斯基和麦卡锡的MIT研究组,塞缪尔的IBM工程研究组等。

自这次会议之后的10多年间,人工智能的研究在机器学习、定理证明、模式识别、问题求解、专家系统及人工智能语言等方面都取得了许多引人注目的成就,例如:

在机器学习方面,1957年Rosenblatt研制成功了感知机。这是一种将神经元用于识别的系统,它的学习功能引起了广泛的兴趣,推动了连接机制的研究,但人们很快发现了感知机的局限性。

在定理证明方面,美籍华人数理逻辑学家王浩于1958年在IBM-704机器上用3~5min证明了《数学原理》中有关命题演算的全部定理(220条),并且还证明了谓词演算中150条定理的85%,1965年鲁宾逊(J. A. Robinson)提出了归结原理,为定理的机器证明作出了突破性的贡献。

在模式识别方面,1959年塞尔夫里奇推出了一个模式识别程序,1965年罗伯特(Roberts)编制出了可分辨积木构造的程序。

在问题求解方面,1960年纽厄尔等人通过心理学试验总结出了人们求解问题的思维规律,编制了通用问题求解程序(General Problem Solver,GPS),可以用来求解11种不同类型的问题。

在专家系统方面,美国斯坦福大学的费根鲍姆(E. A. Feigenbaum)领导的研究小组自1965年开始专家系统DENDRAL的研究,1968年完成并投入使用。该专家系统能根据质谱仪的实验,通过分析推理决定化合物的分子结构,其分析能力已接近甚至超过有关化学专家的水平,在美、英等国得到了实际的应用。该专家系统的研制成功不仅为人们提供了一个实用的专家系统,而且对知识表示、存储、获取、推理及利用等技术是一次非常有益的探索,为以后专家系统的建造树立了榜样,对人工智能的发展产生了深刻的影响,其意义远远超过了系统本身在实用上所创造的价值。

在人工智能语言方面,1960年麦卡锡研制出了人工智能语言(List Processing,LISP),成为建造专家系统的重要工具。

1969年成立的国际人工智能联合会议(International Joint Conferences On Artificial Intelligence,IJCAI)是人工智能发展史上一个重要的里程碑,它标志着人工智能这门新兴学科已经得到了世界的肯定和认可。1970年创刊的国际性人工智能杂志《Artificial Intelligence》对推动人工智能的发展,促进研究者们的交流起到了重要的作用。

3 发展阶段

这个阶段主要是指1970年以后。进入20世纪70年代,许多国家都开展了人工智能的研究,涌现了大量的研究成果。例如,1972年法国马赛大学的科麦瑞尔(A. Comerauer)提出并实现了逻辑程序设计语言PROLOG;斯坦福大学的肖特利夫(E. H. Shorliffe)等人从1972年开始研制用于诊断和治疗感染性疾病的专家系统MYCIN。

但是,和其他新兴学科的发展一样,人工智能的发展道路也不是平坦的。例如,机器翻译的研究没有像人们最初想象的那么容易。当时人们总以为只要一部双向词典及一些词法知识就可以实现两种语言文字间的互译。后来发现机器翻译远非这么简单。实际上,由机器翻译出来的文字有时会出现十分荒谬的错误。例如,当把“眼不见,心不烦”的英语句子“Out of sight,out of mind”。翻译成俄语变成“又瞎又疯”;当把“心有余而力不足”的英语句子“The spirit is willing but the flesh is weak”翻译成俄语,然后再翻译回来时竟变成了“The wine is good but the meat is spoiled”,即“酒是好的,但肉变质了”;当把“光阴似箭”的英语句子“Time flies like an arrow”翻译成日语,然后再翻译回来的时候,竟变成了“苍蝇喜欢箭”。由于机器翻译出现的这些问题,1960年美国政府顾问委员会的一份报告裁定:“还不存在通用的科学文本机器翻译,也没有很近的实现前景。”因此,英国、美国当时中断了对大部分机器翻译项目的资助。在其他方面,如问题求解、神经网络、机器学习等,也都遇到了困难,使人工智能的研究一时陷入了困境。

人工智能研究的先驱者们认真反思,总结前一段研究的经验和教训。1977年费根鲍姆在第五届国际人工智能联合会议上提出了“知识工程”的概念,对以知识为基础的智能系统的研究与建造起到了重要的作用。大多数人接受了费根鲍姆关于以知识为中心展开人工智能研究的观点。从此,人工智能的研究又迎来了蓬勃发展的以知识为中心的新时期。

这个时期中,专家系统的研究在多种领域中取得了重大突破,各种不同功能、不同类型的专家系统如雨后春笋般地建立起来,产生了巨大的经济效益及社会效益。例如,地矿勘探专家系统PROSPECTOR拥有15种矿藏知识,能根据岩石标本及地质勘探数据对矿藏资源进行估计和预测,能对矿床分布、储藏量、品位及开采价值进行推断,制定合理的开采方案。应用该系统成功地找到了超亿美元的钼矿。专家系统MYCIN能识别51种病菌,正确地处理23种抗菌素,可协助医生诊断、治疗细菌感染性血液病,为患者提供最佳处方。该系统成功地处理了数百个病例,并通过了严格的测试,显示出了较高的医疗水平。美国DEC公司的专家系统XCON能根据用户要求确定计算机的配置。由专家做这项工作一般需要3小时,而该系统只需要0.5分钟,速度提高了360倍。DEC公司还建立了另外一些专家系统,由此产生的净收益每年超过4000万美元。信用卡认证辅助决策专家系统American Express能够防止不应有的损失,据说每年可节省2700万美元左右。

专家系统的成功,使人们越来越清楚地认识到知识是智能的基础,对人工智能的研究必须以知识为中心来进行。对知识的表示、利用及获取等的研究取得了较大的进展,特别是对不确定性知识的表示与推理取得了突破,建立了主观Bayes理论、确定性理论、证据理论等,对人工智能中模式识别、自然语言理解等领域的发展提供了支持,解决了许多理论及技术上的问题。

人工智能在博弈中的成功应用也举世瞩目。人们对博弈的研究一直抱有极大的兴趣,早在1956年人工智能刚刚作为一门学科问世时,塞缪尔就研制出了跳棋程序。这个程序能从棋谱中学习,也能从下棋实践中提高棋艺。1959年它击败了塞缪尔本人,1962年又击败了一个州的冠军。1991年8月在悉尼举行的第12届国际人工智能联合会议上,IBM公司研制的“深思”(Deep Thought)计算机系统就与澳大利亚象棋冠军约翰森(D. Johansen)举行了一场人机对抗赛,结果以1:1平局告终。1957年西蒙曾预测10年内计算机可以击败人类的世界冠军。虽然在10年内没有实现,但40年后深蓝计算机击败国际象棋棋王卡斯帕罗夫(Kasparov),仅仅比预测迟了30年。

1996年2月10日至17日,为了纪念世界上第一台电子计算机诞生50周年,美国IBM公司出巨资邀请国际象棋棋王卡斯帕罗夫与IBM公司的深蓝计算机系统进行了六局的“人机大战”。这场比赛被人们称为“人脑与电脑的世界决战”。参赛的双方分别代表了人脑和电脑的世界最高水平。当时的深蓝是一台运算速度达每秒1亿次的超级计算机。第一盘,深蓝就给卡斯帕罗夫一个下马威,赢了这位世界冠军,给世界棋坛以极大的震动。但卡斯帕罗夫总结经验,稳扎稳打,在剩下的五盘中赢三盘,平两盘,最后以总比分4:2获胜。一年后,即1997年5月3日至11日,深蓝再次挑战卡斯帕罗夫。这时,深蓝是一台拥有32个处理器和强大并行计算能力的RS/6000SP/2的超级计算机,运算速度达每秒2亿次。计算机里存储了百余年来世界顶尖棋手的棋局,5月3日棋王卡斯帕罗夫首战击败深蓝,5月4日深蓝扳回一盘,之后双方战平三局。双方的决胜局于5月11日拉开了帷幕,卡斯帕罗夫在这盘比赛中仅仅走了19步便放弃了抵抗,比赛用时只有1小时多一点。这样,深蓝最终以3.5:2.5的总比分赢得这场举世瞩目的“人机大战”的胜利。深蓝的胜利表明了人工智能所达到的成就。尽管它的棋路还远非真正地对人类思维方式的模拟,但它已经向世人说明,电脑能够以人类远远不能企及的速度和准确性,实现属于人类思维的大量任务。深蓝精湛的残局战略使观战的国际象棋专家们大为惊讶。卡斯帕罗夫也表示:“这场比赛中有许多新的发现,其中之一就是计算机有时也可以走出人性化的棋步。在一定程度上,我不能不赞扬这台机器,因为它对盘势因素有着深刻的理解,我认为这是一项杰出的科学成就。”因为这场胜利,IBM的股票升值为180亿美元。

4 人工智能的学派

根据前面的论述,我们知道要理解人工智能就要研究如何在一般的意义上定义知识,可惜的是,准确定义知识也是个十分复杂的事情。严格来说,人们最早使用的知识定义是柏拉图在《泰阿泰德篇》中给出的,即“被证实的、真的和被相信的陈述”(Justified true belief,简称JTB条件)。

然而,这个延续了两千多年的定义在1963年被哲学家盖梯尔否定了。盖梯尔提出了一个著名的悖论(简称“盖梯尔悖论”)。该悖论说明柏拉图给出的知识定文存在严重缺陷。虽然后来人们给出了很多知识的替代定义,但直到现在仍然没有定论。

但关于知识,至少有一点是明确的,那就是知识的基本单位是概念。精通掌握任何一门知识,必须从这门知识的基本概念开始学习。而知识自身也是一个概念。因此,如何定义一个概念,对于人工智能具有非常重要的意义。给出一个定义看似简单,实际上是非常难的,因为经常会涉及自指的性质(自指:词性的转化——由谓词性转化为体词性,语义则保持不变)。一旦涉及自指,就会出现非常多的问题,很多的语义悖论都出于概念自指。

自指与转指这一对概念最早出自朱德熙先生的《自指与转指》(《方言》1983年第一期,《朱德熙文集》第三卷)。陆俭明先生在《八十年代中国语法研究》中(第98页)说:“自指和转指的区别在于,自指单纯是词性的转化-由谓词性转化为体词性,语义则保持不变;转指则不仅词性转化,语义也发生变化,尤指行为动作或性质本身转化为指与行为动作或性质相关的事物。”

举例:

①教书的来了(“教书的”是转指,转指教书的“人”);教书的时候要认真(“教书的”语义没变,是自指)。

②Unplug一词的原意为“不使用(电源)插座”,是自指;常用来转指为不使用电子乐器的唱歌。

③colored在表示having colour(着色)时是自指。colored在表示有色人种时,就是转指。

④rich,富有的,是自指。the rich,富人,是转指。

知识本身也是一个概念。据此,人工智能的问题就变成了如下三个问题:一、如何定义(或者表示)一个概念、如何学习一个概念、如何应用一个概念。因此对概念进行深人研究就非常必要了。

那么,如何定义一个概念呢?简单起见,这里先讨论最为简单的经典概念。经典概念的定义由三部分组成:第一部分是概念的符号表示,即概念的名称,说明这个概念叫什么,简称概念名;第二部分是概念的内涵表示,由命题来表示,命题就是能判断真假的陈述句。第三部分是概念的外延表示,由经典集合来表示,用来说明与概念对应的实际对象是哪些。

举一个常见经典概念的例子——素数(prime number),其内涵表示是一个命题,即只能够被1和自身整除的自然数。

概念有什么作用呢?或者说概念定义的各个组成部分有什么作用呢?经典概念定义的三部分各有作用,且彼此不能互相代替。具体来说,概念有三个作用或功能,要掌握一个概念,必须清楚其三个功能。

第一个功能是概念的指物功能,即指向客观世界的对象,表示客观世界的对象的可观测性。对象的可观测性是指对象对于人或者仪器的知觉感知特性,不依赖于人的主观感受。举一个《阿Q正传》里的例子:那赵家的狗,何以看我两眼呢?句子中“赵家的狗”应该是指现实世界当中的一条真正的狗。但概念的指物功能有时不一定能够实现,有些概念其设想存在的对象在现实世界并不存在,例如“鬼”。

第二个功能是指心功能,即指向人心智世界里的对象,代表心智世界里的对象表示。鲁迅有一篇著名的文章《论丧家的资本家的乏走狗》,显然,这个“狗”不是现实世界的狗,只是他心智世界中的狗,即心里的狗(在客观世界,梁实秋先生显然无论如何不是狗)。概念的指心功能一定存在。如果对于某一个人,一个概念的指心功能没有实现,则该词对于该人不可见,简单地说,该人不理解该概念。

最后一个功能是指名功能,即指向认知世界或者符号世界表示对象的符号名称,这些符号名称组成各种语言。最著名的例子是乔姆斯基的“colorless green ideas sleep furiously”,这句话翻译过来是“无色的绿色思想在狂怒地休息”。这句话没有什么意思,但是完全符合语法,纯粹是在语义符号世界里,即仅仅指向符号世界而已。当然也有另外,“鸳鸯两字怎生书”指的就是“鸳鸯”这两个字组成的名字。一般情形下,概念的指名功能依赖于不同的语言系统或者符号系统,由人类所创造,属于认知世界。同一个概念在不同的符号系统里,概念名不一定相同,如汉语称“雨”,英语称“rain”。

根据波普尔的三个世界理论,认知世界、物理世界与心理世界虽然相关,但各不相同。因此,一个概念的三个功能虽然彼此相关,也各不相同。更重要的是,人类文明发展至今,这三个功能不断发展,彼此都越来越复杂,但概念的三个功能并没有改变。

在现实生活中,如果你要了解一个概念,就需要知道这个概念的三个功能:要知道概念的名字,也要知道概念所指的对象(可能是物理世界)。更要在自己的心智世界里具有该概念的形象(或者图像)。如果只有一个,那是不行的。

知道了概念的三个功能之后,就可以理解人工智能的三个学派以及各学派之间的关系。

人工智能也是一个概念,而要使一个概念成为现实,自然要实现概念的三个功能。人工智能的三个学派关注于如何才能让机器具有人工智能,并根据概念的不同功能给出了不同的研究路线。专注于实现AI指名功能的人工智能学派成为符号主义,专注于实现AI指心功能的人工智能学派称为连接主义,专注于实现AI指物功能的人工智能学派成为行为主义。

1. 符号主义

符号主义的代表人物是Simon与Newell,他们提出了物理符号系统假设,即只要在符号计算上实现了相应的功能,那么在现实世界就实现了对应的功能,这是智能的充分必要条件。因此,符号主义认为,只要在机器上是正确的,现实世界就是正确的。说得更通俗一点,指名对了,指物自然正确。

在哲学上,关于物理符号系统假设也有一个著名的思想实验——本章1.1.3节中提到的图灵测试。图灵测试要解决的问题就是如何判断一台机器是否具有智能。

图灵测试将智能的表现完全限定在指名功能里。但马少平教授的故事已经说明,只在指名功能里实现了概念的功能,并不能说明一定实现了概念的指物功能。实际上,根据指名与指物的不同,哲学家约翰·塞尔勒专门设计了一个思想实验用来批判图灵测试,这就是著名的中文屋实验。

中文屋实验明确说明,即使符号主义成功了,这全是符号的计算跟现实世界也不一定搭界,即完全实现指名功能也不见得具有智能。这是哲学上对符号主义的一个正式批评,明确指出了按照符号主义实现的人工智能不等同于人的智能。

虽然如此,符号主义在人工智能研究中依然扮演了重要角色,其早期工作的主要成就体现在机器证明和知识表示上。在机器证明方面,早期Simon与Newell做出了重要的贡献,王浩、吴文俊等华人也得出了很重要的结果。机器证明以后,符号主义最重要的成就是专家系统和知识工程,最著名的学者就是Feigenbaum。如果认为沿着这条路就可以实现全部智能,显然存在问题。日本第五代智能机就是沿着知识工程这条路走的,其后来的失败在现在看来是完全合乎逻辑的。

实现符号主义面临的观实挑成主要有三个。第一个是概念的组合爆炸问题。每个人掌握的基本概念大约有5万个,其形成的组合概念却是无穷的。因为常识难以穷尽,推理步骤可以无穷。第二个是命题的组合悖论问题。两个都是合理的命题,合起来就变成了没法判断真假的句子了,比如著名的柯里悖论(Curry’s Paradox)(1942)。第三个也是最难的问题,即经典概念在实际生活当中是很难得到的,知识也难以提取。上述三个问题成了符号主义发展的瓶颈。

2. 连接主义

连接主义认为大脑是一切智能的基础,主要关注于大脑神经元及其连接机制,试图发现大脑的结构及其处理信息的机制、揭示人类智能的本质机理,进而在机器上实现相应的模拟。前面已经指出知识是智能的基础,而概念是知识的基本单元,因此连接主义实际上主要关注于概念的心智表示以及如何在计算机上实现其心智表示,这对应着概念的指心功能。2016年发表在Nature上的一篇学术论文揭示了大脑语义地图的存在性,文章指出概念都可以在每个脑区找到对应的表示区,确确实实概念的心智表示是存在的。因此,连接主义也有其坚实的物理基础。

连接主义学派的早期代表人物有麦克洛克、皮茨、霍普菲尔德等。按照这条路,连接主义认为可以实现完全的人工智能。对此,哲学家普特南设计了著名的“缸中之脑实验”,可以看作是对连接主义的一个哲学批判。

缸中之脑实验描述如下:一个人(可以假设是你自己)被邪恶科学家进行了手术,脑被切下来并放在存有营养液的缸中。脑的神经末梢被连接在计算机上,同时计算机按照程序向脑传递信息。对于这个人来说,人、物体、天空都存在,神经感觉等都可以输入,这个大脑还可以被输入、截取记忆,比如截取掉大脑手术的记忆,然后输入他可能经历的各种环境、日常生活,甚至可以被输入代码,“感觉”到自己正在阅读这一段有趣而荒唐的文字。

缸中之脑实验说明即使连接主义实现了,指心没有问题,但指物依然存在严重问题。因此,连接主义实现的人工智能也不等同于人的智能。

尽管如此,连接主义仍是目前最为大众所知的一条AI实现路线。在围棋上,采用了深度学习技术的AlphaGo战胜了李世石,之后又战胜了柯洁。在机器翻译上,深度学习技术已经超过了人的翻译水平。在语音识别和图像识别上,深度学习也已经达到了实用水准。客观地说,深度学习的研究成就已经取得了工业级的进展。

但是,这并不意味着连接主义就可以实现人的智能。更重要的是,即使要实现完全的连接主义,也面临极大的挑战。到现在为止,人们并不清楚人脑表示概念的机制,也不清楚人脑中概念的具体表示形式表示方式和组合方式等。现在的神经网络与深度学习实际上与人脑的真正机制距离尚远。

3. 行为主义

行为主义假设智能取决于感知和行动,不需要知识、表示和推理,只需要将智能行为表现出来就好,即只要能实现指物功能就可以认为具有智能了。这一学派的早期代表作是Brooks的六足爬行机器人。

对此,哲学家普特南也设计了一个思想实验,可以看作是对行为主义的哲学批判,这就是“完美伪装者和斯巴达人”。完美伪装者可以根据外在的需求进行完美的表演,需要哭的时候可以哭得让人撕心裂肺,需要笑的时候可以笑得让人兴高采烈,但是其内心可能始终冷静如常。斯巴达人则相反,无论其内心是激动万分还是心冷似铁,其外在总是一副泰山崩于前而色不变的表情。完美伪装者和斯巴达人的外在表现都与内心没有联系,这样的智能如何从外在行为进行测试?因此,行为主义路线实现的人工智能也不等同于人的智能。

对于行为主义路线,其面临的最大实现困难可以用莫拉维克悖论来说明。所谓莫拉维克悖论,是指对计算机来说困难的问题是简单的、简单的问题是困难的,最难以复制的反而是人类技能中那些无意识的技能。目前,模拟人类的行动技能面临很大挑战。比如,在网上看到波士顿动力公司人形机器人可以做高难度的后空翻动作,大狗机器人可以在任何地形负重前行,其行动能力似乎非常强。但是这些机器人都有一个大的缺点一能耗过高、噪音过大。大狗机器人原是美国军方订购的产品,但因为大狗机器人开动时的声音在十里之外都能听到,大大提高了其成为一个活靶子的可能性,使其在战场上几乎没有实用价值,美国军方最终放弃了采购。

结语:以上就是首席CTO笔记为大家介绍的关于早期人类如何研究人工智能的全部内容了,希望对大家有所帮助,如果你还想了解更多这方面的信息,记得收藏关注本站。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若转载,请注明出处:/AI/48092.html