导读:很多朋友问到关于大数据的幕后推手是哪个定律的相关问题,本文首席CTO笔记就来为大家做个详细解答,供大家参考,希望对大家有所帮助!一起来看看吧!
大数据时代,大数据概念,大数据分析是什么意思?
大数据概念就是指大数据,指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据时代是IT行业术语。最早提出“大数据”时代到来的是全球知名咨询公司麦肯锡,麦肯锡称:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。”
大数据分析是指对规模巨大的数据进行分析。大数据可以概括为4个V, 数据量大(Volume)、速度快(Velocity)、类型多(Variety)、价值(Value)。
扩展资料:
大数据分析的实例应用:
数据分析成为巴西世界杯赛事外的精彩看点。伴随赛场上球员的奋力角逐,大数据也在全力演绎世界杯背后的分析故事。
一向以严谨著称的德国队引入专门处理大数据的足球解决方案,进行比赛数据分析,优化球队配置,并通过分析对手数据找到比赛的“制敌”方式;谷歌、微软、Opta等通过大数据分析预测赛果...... 大数据,不仅成为赛场上的“第12人”,也在某种程度上充当了世界杯的"预言帝"。
大数据分析邂逅世界杯,是大数据时代的必然发生,而大数据分析也将在未来改变我们生活的方方面面。
参考资料来源:百度百科-大数据概念
参考资料来源:百度百科-大数据分析
参考资料来源:百度百科-大数据时代
统计学和大数据如何帮助我们认知世界?
你发现没有,如果你在网上买过东西,商家就会根据你的网购经历,给你推荐很多相关的商品。比方说你买了婴儿奶粉,商家除了给你再推荐奶粉,还会给你推荐婴儿车、婴儿床。还有,你可能也听过,很多互联网公司都会基于后台收集到的各种数据,做出自己产品的“用户画像”,让分散在整个互联网上的用户,从无数抽象的数据,变成一个或者几个具象化的人物,然后再有目的地优化自己的产品。那你知道支撑大数据和算法科技的,是哪一门学科呢?可能你也想到了,对,就是专门处理数据的统计学。
统计学是一门古老的学科,从人类文明出现以来,统计就已经存在。从最开始的结绳记事,到后来随着各种政权的出现,为了方便管理,各国都会成立专门的机构负责统计国家信息,比如中国古代的户部。漫长的人类历史不仅是统计学的发展史,也是人类认知世界的历史。为什么这么说呢?接下来,我就从以下三个方面解释这个问题。首先,我给你说说统计学的基本原理、这个学科的底层逻辑是什么。接着,跟你说说,统计学作为一门应用科学,它的基本理论框架包括哪些内容,它又是如何帮助我们去处理复杂的数据,用已知去预测未知的。最后,我们再来看看大数据时代的统计革命。
一般意义上的统计学,包含了概率学与数理统计学两个部分,都以概率论为基础。听着吓人,其实除了一个吓人的名字,这门学问并不高深,我们从小到大都和它打着交道。比如学生时代参加的大大小小的考试,本质上都是数学统计的过程。老师出的考卷就相当于一张调查问卷,通过选择有限的知识点和题目,来考察我们对整个知识体系的掌握情况。用统计学的术语表达出来,这就是典型的抽样调查,考试成绩就是量化后的调查结果,而我们每个人的学习能力和努力程度,就会以分数的形式展现出来。
其实统计学作为一门应用科学,统计一直是从问题出发的,它的本质就是借助一些数学工具来解决现实问题。一个统计学家所做的工作,就是通过分析数据来推断事物的本质,预测它未来的发展。而分析数据的第一步,就是找出那些看似偶然发生的事件,背后隐藏着哪些必然性的统计规律。这里就要用到两个概率学基本定理,第一个是大数定律,它是整个概率学的基础。在生活中,想要做好财产管理和风险投资,都离不开它。
第二个是中心极限定理,这个定理解释了,为什么我们可以通过随机抽样,来调查整个群体的特点规律。了解这些概率学知识之后,我们就可以把目光放在统计学的基本方法上。
第三个重点我们就来说说,随机抽样,这是调查统计的基础环节,我们可能大概知道它是怎么回事,但是其实这个环节,经常容易出错。那么,对于比较复杂的问题,科学家又是如何开展分析研究的昵?
第四个重点我们就来着重了解,“回归分析”这种数据分析方法。
第一个重点:大数定律
想象一下你在学生时代的某天,老师心情不好,一连在班级里做了10次单词听写。 对你来说,每次听写的成缋肯定是有浮动的,可能有一两次得分比较高,一两次不太理想。但听写了这么多次,应该比较能反映你的真实水平了。这就是“大数定律”的主要内涵,用数学术语来表达,那 就是当试验次数足够多时,实验结果的平均值会无限地接近一个数值,这个数值一般叫做“期望值”。它的意义在于,我们可以通过研究概率来看清风险,做出决定,尤其是在理财和投资的时候,体现得特别明显。
比如常常有人幻想自己一夜暴富,那最有可能的方法就是,买彩票或者进赌场。其实博彩行业就是依靠概率理论来发财的,让大家都觉得自己会是那个幸运儿。可如果按照每期奖金的数额除以彩票的发行量,每张彩票的实际价值都不到1分钱,但人们依然热衷于花2元钱来交换1分钱。就算是某期彩票暴出大奖掏空了奖池,从长远看,发行彩票也是稳赚不赔的。为什么昵?根据“大数定律”,对于长期发行、销量稳定的彩票,奖金总额的期望值是恒定的,发行机构只要保证彩票的销售额大于奖金期望值,就肯定赚钱。赌场也是一样,只要能吸引到足够数量的赌客,不管幸运儿蠃走多少钱,赌场永远是最后的蠃家。所以,一夜暴富的事发生在我们身上的概率微乎其微,沉溺其中的结果,就是让赌场老板和彩票发行机构大赚了一笔。
反过来,对于一些期望值比较高的投资,我们也要用到大数定律的知识。比如一个投资门槛是100万的项目,成功率只有30%,但是预期回报达到了500%,这么诱人该不该投昵?这时候,如果你把注意力都放在了高回报率上就很危险。我们要注意,大数定律成立的前提是“试验次数 足够多”。投资100万可不是买2元钱的彩票,如果你是工薪阶层,用来投资的100 万元是你的全部资产,那你显然没有多次投资的资本。这时候如果你孤注一掷,有70%的概率会血本无归。反过来,如果你是巴菲特,那这样的项目肯定是来得越多越好,因为你投资的几百个项目里肯定有一些会成功,平均来看一定会像开赌场一样赚到大钱。所以,面对理财投资中的高期望,我们首先要考虑的因素就是风险倾向。根据大数定律,你的风险承受能力越强,意味着允许试验的次数越多,也就越有可能赚到期望的投资回报。
生活中最常见的、依靠大数定律来赚钱的其实是保险行业。比如我们在网上购买电子产品的时候,网站经常会向我们推销延长保修服务。比如一台1000元的打印机, 多花50元可以延保1年。如果你掌握了大数定律,就很容易想到,厂家对这款打印机提供维修服务的预期成本,肯定少于50元,否则就要赔钱了。
但有些时候,这种钱还必须得花。大家都知道保险公司利润很高,假设一种人身意外险的赔偿额度是100万,发生意外的概率是百万分之一,那么预期损失就是1元钱,如果你花10元钱来买,保险公司就能挣到10倍的利润,基本和开赌场没什么区别。但你要知道,买这类保险的意义并不是为了省钱,而是当你遭受一些难以承受的巨大损失时,帮你渡过难关。因为人身意外的损失,是不能和一千元的打印机来比较的,这时保险更多的是一个规避风险的理性工具。
第二个重点:中心极限定理
这个定理是概率学首席定理,我们可以这么理解:假如你烧了一锅汤,想知道味道怎么样,没必要把汤都喝光,只要尝一小勺就可以了,任意一勺汤的味道绝不会相差很远。那中心极限定理的含义就是,任意一个群体样本的平均值,都会围绕在这个群体的整体平均值周围。我们对一个基数庞大的群体做统计调查的时候,只要对其中的一部分样本进行研究,得出的结论就能反映整个群体的特点,而且抽样的数量越大,准确性越高。
因为这个定理的存在,我们开展调查统计就变得简单方便了。如果我们掌握了某个群体的具体信息,就能推理出从这个群体中正确抽取的随机样本的情况。举一个有趣的例子:假设有一个城市同时在举办马拉松比赛和吃热狗大赛,比赛前有一辆载满外国马拉松运动员的公交车不见了,结果警察找到了一辆载满大胖子外国人的公交车。由于语言不通,那警察只能根据经验来判断。即使马拉松选手里面可能也有一两个略重的,但是满车都是胖子不大可能。所以利用中心极限定理不难推断出,警察很可能找错了车子。
当然这属于比较极端的情况,如果换个场景条件,找到的两辆车中,乘客有胖有瘦,该怎么判断呢?这时候我们可以对车中乘客的体重进行测量,计算他们体重分布的标准差,运用中心极限定理,我们仍然能判断出哪辆车是我们要找的。这是因为:马拉松运动员群体的体重标准差是明显小于普通群体的,他们的体重分布更集中。这也是中心极限定理的另一种运用,那就是如果已知两个样本的基本特性,就能推理出这两个样本是不是来自同一个群体。
第三个重点:随机抽样
随机抽样,是我们收集数据的主要方法。比如开展问卷调查的时候,如果客户数量庞大,根据前面说过的中心极限定理,只要在他们中间抽取一部分有代表性的样本来填写问卷,就能达到目的。这个选取代表性样本的过程就是随机抽样。
所以,随机抽样只是看似简单,它的关键在于“随机”这两个字。要做到随机,必须保证每个对象被抽到的概率完全相等,这样抽样后的样本才能代表整个对象群体。比方说我们想知道100个玩具球中有多少红色球、多少蓝色球,只要把它们放进一个袋子里,然后随机取出30个,就能得到基本准确的颜色比例。但问题是,我们开展调查时的对象是人,我们所关心的人口组成远远要比一袋子玩具球要复杂。 如果不能保证相关人口中的每个人,被选为样本的概率都相同,作者就认为这样的抽样结果存在“偏见”,这样有偏见的样本往往会得出荒谬的结论。
第四个重点:回归分析
在说回归分析之前,先来讲讲高尔顿发现的“回归现象”——从遗传学的角度来看,父母高的话,孩子也应该高,父母矮的话,孩子也应该矮呀。但是实际测量的数据却不是这样的。整体来看,孩子的身高其实都有一个逐步向人类平均身高靠拢的现象,高尔顿将这种数据向总体平均值靠拢的现象称为“均值回归”。
其实,高尔顿提出的概念,已经和成熟的统计思想非常接近了。但是首次将这种思想用数学公式表达出来的是他的学生卡尔.皮尔逊。
1895年,皮尔逊第一次在科学史上明确地阐述了实验数值的随机性,而所有出现的观测值都可能符合某种规律性。科学的目的,就是找到几个指标来描述这种规律性。他告诉大家都别为自己的实验误差纠结了,世界本来就是测不准的,每次的实验结果都是随机出现的,至于怎么出现有它自己的规律,科学研究的主要工作不在于研究具体数据,而在于发现这种规律性。这种思想对当时的科学界来说,就像是一枚重磅炸弹。
可以说,皮尔逊的统计思想颠覆了当时人们认知世界的方式,人们开始认识到,万事万物不见得一定是因果关系,而是相互作用相互影响的相关关系,人们也逐渐接受了实验结果的随机性。这种事物间的相关性以及数据分布的随机性,也得到了科学界的普遍认可,直到现在已经深深地渗入到我们的曰常生活中了。
皮尔逊的思想虽然具有颠覆性,但由于他自己的数学能力有限,有些概念和数学推导并不成熟,后来皮尔逊的朋友戈赛特和费希尔重新定义了一些统计概念,纠正了皮尔逊的一些错误。尤其是费希尔,他在一般性的统计方法和统计思想上,提出了实验设计方法、方差分析法、回归分析方法等。
其中回归分析方法,是一种非常强大的统计学方法,专门用来分析那些影响因素很多的复杂问题。简单来说,回归分析就是通过一个已知的现象,来找到未知的原因。它可以通过严格的数学分析,复原出每种原因对结果的贡献比例。
举个例子,伦敦大学公共卫生学院曾经主持过一项著名的“白厅”研究。医学家们发现,英国政府里低级别的公务员,患上心脏病的概率比他们的上司更高,白厅研究就是要找出这背后的真实原因。这个研究显然不能用随机抽样的方法实现,因为我们不可能把志愿者强行分配到各个工作岗位工作几年,然后再看哪些人因公殉职了。研究员只能在很长一段时间里,对数千名公务员进行详细的数据采集,来比对各类导致心脏病的可能因素。
比如说,低阶公务员的学历普遍偏低,会不会是影响因素?烟民比例多呢?还是不能享受到高水平的医疗服务?或者是加班多,锻炼时间少?这些都是导致心脏病高发的变量,那么到底哪一个才具有决定性的影响呢?这么庞杂的数据里有太多错综复杂的因素,显然会干扰研究员的判断。这时候就要用到回归分析这个工具,它的作用好比一个可以调节孔径的筛子,能在综合考虑其他变量效果不变的情况下,把其中一个变量的效果分离出来。
回归分析的数学过程比较复杂,好在现在有了成熟的多元线性回归方程模型可以套用。我们要做的,就是把多个变量的取样结果代入回归方程式,计算结果就会显示出,我们关注的变量和心脏病发病率的线性关系。通过统计推断,我们就能知道这个变量到底在多大程度上影响了发病率。实验结果表明,造成心脏病高发的真正原因,是对工作缺乏控制力和话语权。而这类存在感较低的岗位,在低级别职位中更常见。现在,“低控制力”已经成了一个 专有名词,专指那些精神负担重、决策水平低的工作。
事实上,当前科学界绝大多数的研究结论都是以回归分析作为基础的。尤其是回归分析软件的普及,让建立模型和解析方程变得很简单。但同时也要注意,电脑永远不能代替人的工作,如果我们在进行回归分析时遗漏了变量,或者忽视反面因素,回归分析就会得出危险的结论。
比如,上世纪90年代,哈佛大学医学院对12万名女性开展了纵向调查,经过严格的回归分析证实,定期摄入雌激素的女性, 突发心脏病的概率只有其他女性的1/3。医学机构支持了这个观点,医院开始定期为中老年妇女进行雌激素的补充治疗。然而后来的临床试验发现,补充雌激素的副作用会导致乳腺癌和血栓病高发,这是科学家们没有考虑到的重大疏漏。最终,因为接受雌激素治疗而死亡的女性患者达到上万人。你看,一旦出现变量遗漏,错误的回归分析结果甚至会杀人。
以上就是我们要说的第一部分的内容,这部分的重点是统计学的基本原理与相关概念。统计学就是基于问题,收集数据、分析数据、解读数据的过程。它的产生起源于我们探索世界的需要。第二部分我们来讲讲统计学的基本框架。
我们所处的世界包含各种各样的事物,我们想全部观察一遍几乎是不可能的,人口普查不可能年年搞,了解新药疗效也不可能让每个病人都试一下,但是观察一部分我们还是可以做到的。在统计学里,这个真实的世界或者我们想研究的事物,被称为“总体”,而从总体找到一 部分具有代表性的个体,就是找“样本”,统计学就是帮助我们利用样本的信息来推测总体情况的工具,也就是从局部到整体,从已知到未知的过程。
当我们使用统计学的时候,一般有两种目的。要么,是为了分析现有的样本数据,要么,是估计未知的总体情况。根据不同的目的,统计学可以划分为两大部分,一部分是描述统计,一部分是推论统计。
这两个词儿听起来可能不太好理解,我来给你解释一下。简单说,描述统计其实就是处理样本数据的过程,通过对杂乱无章的原始数据进行整理,让这些数据能够直观简练地呈现出来,并作为我们认识事物的客观依据;而推论统计则带有猜测的成分,是从样本到总体的过程,通过整理出来的样本数据信息来估计总体、预测未来。可以说,这两种统计方法的功能不一样,描述统计针对的是已知的样本,是当下;推论统计针对的是未知的总体,是未来。
大面儿上了解了它们的区别,我再分别给你举例说明一下。
我们先说“描述统计”。其实描述统计理解起来并不复杂,它无非从几个角度来描述数据,告诉我们数据整体处于什么样的水平,数据内部分布是比较平均还是参差不齐,在某个具体的行业或领域内跟其他数据横向相比处于什么样的水平,或者从历史的角度纵向来看又处于怎样的水平。 实际工作中当我们分析某个企业的薪酬水平、某国的GDP数据时,基本就是从这些维度思考的。
描述统计虽然是一种处理数据的方法,但它作为一种思维方式同样指导着我们的工作和生活。比如,我们有时会听到“用户画像”这样一个概念,是不是听起来很高大上?但其实它本质上就是一种描述统计。数据团队在制作“用户画像”的过程中,首先会根据需要选取关键的指标或者维度,然后收集各个维度的数据或相关信息,比如收入水平、教育水平、产品使用频率等,这就是一个计算平均值的过程; 最后将这些信息整理,抽象出一个用户的信息全貌,给用户贴标签,这个过程就是把各个指标的平均值综合起来然后用文字描述出来。当然具体的操作要比这些复杂得多,但其本质并没有区别,只不过描述统计处理的是数据,而用户画像有可能处理的是文字而已。
了解了描述统计的含义和功能,我们再来说说“推论统计”。
前面我们提到,推论统计本质上就是用样本信息推测总体情况,利用已知信息去估计未知的过程,这其中含有“猜”的成分,既然是“猜”就必然存在如何判断猜得准不准的问题。因此在统计教材中,这部分章节涉及大量的统计方法和计算公式,还有复杂的逻辑推理过程,让很多人头痛不已。然而无论是使用什么分析方 法,本质上都不外乎是这么两种思路,那就是“参数估计”和“假设检验”。
所谓的“参数估计”,就是直接从样本出发,利用样本计算出的数据来估计总体情况,它又分为点估计和区间估计两种,简单来讲就是你在估计的时候用的是一个具体的数值还是一个数值范围。现实生活中,其实我们每天都在“被估计”,每当你刚浏览完某个产品的信息,紧接着平台 就会给你推荐一大堆相关产品。但细心的话,你可能会发现虽然买的是同样的东西,但不同的平台随后给你推荐的产品却不太一样。这是因为,他们抓取的样本数据或者具体算法不同,但背后的统计思想并没有差别,无外乎用现有的大多数人的样本数据来预测你的偏好。
除了“参数估计”,推论统计里,还有一种重要的方法就是“假设检验”。简单来说,“假设检验”就是从总体出发,先对总体情况提出一个假设,称之为“零假设”。然后通过实验收集数据,将收集到的数据跟这个零假设进行比较,看看之前的差异大不大,大到什么程度才能认为实验方法是有效的。其实“假设检验”的思路跟我们生活中的目标管理很像,先定目标,执行完后看看目标是否达成。这个分析方法,在学术研究领域,是非常常见的。当然科学家们做的“假设检验”要比 这复杂严谨得多,但基本思路就是这么简单。
现在假设检验的思想已经渗透到了现代科学教育中,并成为科学家和工程师的常规思考方式,他们在进行科学研究、发表科学论文的时候,基本都会用到这种思路。通常“零假设”都是一些通过多次验证的共识性的结论,想要推翻它可不容易,而科学研究就是一步一步地、小心翼翼地在试图推翻“零假设”的过程。最后,我们来讲讲大数据时代的统计革命。
到了互联网时代,大数据技术的发展让我们能够很容易获得整体的数据,统计学这个从样本来估计整体的学科,还有那么大的价值吗?统计学是通过"概率"和“相关”来认识世界的,但谁能保证这是绝对正确的呢?概率这种看不见摸不着的东西真的存在吗?我们认知世界的方式真的正确吗?如果这一点没法确认,那大数据会不会带来另一场认知革命?我们认知世界的方式又会经历怎样的变革?
最后,我们的社会生活是建立在科学原理之上的,进入到大数据时代,转变自己对周围世界的认知方式非常重要。所以,掌握一些基本的统计学知识,刻意挑战一下自己对世界的直观感性认识,培养理性判断的能力,会对我们很有帮助。我们未必都要把自己变成科学家,但要尽量让自己具备科学家式的思维方式,这会让我们在做关键判断的时候游刃有余。
大数据分析&人工智能 技术内容价值观辨析
随着技术的不断发展,技术的种类越来越多,人们不可能掌握全部的技术,但是技术对于人们的选择有了太多太多,这时候在选择什么技术的时候,人们往往就会陷入迷茫,不知道应该选择什么样的技术,不清楚自己应该从什么技术下手,甚至说会怀疑技术的作用,认为有些技术没有意义,不知道有什么用。今天我们探讨一下数据科学领域内的技术存在的意义,分析一下大数据分析是否鸡肋,在数据科学技术体系中,最高价值技术到底是什么,以及在人工智能领域中反对派的声音越来越大的时候,人工智能是否还能走下去,还能走多远? 大数据技术:计算资源无限,世界将会是怎样
大数据分析并不鸡肋
在计算机诞生的70年后,单台计算机的计算性能逼近物理极限,伴随计算机发展的摩尔定律逐渐失效。在这70年的发展过程中,刚开始是可以用摩尔定律进行准确的描述的,1965年,英特尔创始人之一戈登摩尔在考察计算机硬件的发展规律后,提出了著名的摩尔定律:
该定律认为,同一面积芯片上可容纳晶体管的数量,每隔16-24个月将翻一倍,计算性能也将翻一倍。换而言之,也就是每隔16-24个月,单位价格可购买到的计算能力将翻一倍。在随后的几十年内,摩尔定律被无数次的被印证。而直到现在,计算机性能已经逼近极限的情况下,摩尔定律似乎已经失效了。
发展的期间伴随着摩尔定律不断的生效,在计算机方面同步发展的还有网络宽带和物理的存储容量,半个多世纪以来,存储器的价格几乎下降到原来价格的亿分之一。
而网络宽带的的速度也在不断的突破极限。
随着这些物理硬件的升级,计算机领域内便产生了OTT式的技术革新,诞生了分布式计算和量子计算机技术,而这两者的出现,也必将决定性的改变计算机资源供给端的情况。
分布式计算机技术,已经逐渐成为大数据领域底层IT架构的行业标准,分布式计算可以实现一个计算目标可以调配无限计算资源并予以支持,解决了大数据情境中运算量过大、超出单台物理机运算承受能力极限的问题,并且同物理计算资源协同调配,为后续的云计算奠定了基础。客观 的讲,分布式计算机技术使计算资源趋于无限。
而量子计算机技术将使单体计算能力拥有质的飞跃。但是在量子计算机核心技术尚未突破之时,人类面对呈现爆发式增长的数据束手无策….
在经过这漫长的探索后,人类现在决定先借助分布式计算技术实现新的一轮OTT式技术革新,而此举将不仅解决了海量数据存储与计算问题,还有希望帮助人类彻底摆脱计算资源瓶颈的束缚。计算资源无限,世界将会怎样….
但是从大数据技术的发展现状来看,真正的难点还是在于底层工具的掌握,由于发展尚处于初级阶段,还需要人们掌握大量的底层工具,这条道路因为走得人少所以才会显得泥泞不堪,只有将基础工具发展和掌握成熟之后,才可以降低使用者的门槛。
对于我们而言,这条路难么?真的很难!但是是值得我们客服这条路上的困难的,因为收益会非常的划算,这条路的难处在于要掌握很多底层工具,为什么?因为走这条路的人少,现在还是一条泥巴路,很难走,但是为什么是值得我们克服困难也要走下去呢,是因为只要量子计算机不出现、随着摩尔定律的失效、数据量还在增加,大量过路的需求会催生一条又一条高速公路,然后铺路的大公司设卡收税,泥巴路迟早会变成高速公路,但只要你先过去,就能看到别人看不到的风景。
从计算机由DOS系统到桌面系统,Python机器学习由源码到算法库,不一直都是这样么。
机器生产释放脑力,机器学习释放脑力
数据革命的本质
大数据分析技术有价值、数据分析技术更有价值,那整个数据科学知识内容体系中,最有价值的到底是什么?
如果从发现技术的角度看待问题确实很有意思,那我们不妨再来探讨一个问题,那就是从技术层面而言(非工作是否好找的角度),数据科学中最有价值的技术模块是哪个?
人工智能是数据养育的智能,其决策的核心是算法,人工智能的发展与十八世纪工业革命通过机器生产代替手工劳动从而释放人类的劳动力类似,数据智能将通过参与、代替人类决策的方式,释放人类脑力。而机器学习就是提供人工智能决策的算法核心。
机器学习算法的核心用途是挖掘事物运行内在逻辑和规律,就是把数据作为接受外部信息形式,用数据还原外部事物的基本属性和运行状态,用机器学习算法对其规律进行挖掘,还原客观规律。再应用规律辅助决策。
机器学习可以使得人工智能在人类基础重复决策领域代替人类参与决策。
算法的核心方法论,是取法其上,仅得为中,数据分析核心价值要有技术核心价值这杆大旗;不管小数据还是大数据,都是重分析。而伴随着Python的星期,催生出了进一步完善的基础设施,Python依然成为了标准的工具。
而Python最核心的技能就可以说是利用众多强大的算法库进行算法建模分析
强人工智能、弱人工智能,还是人工智障
数据、算法、计算能力这三架马车所推动的人工智能技术发展,是否已经遇到了瓶颈
2018年1月我国国家标准化管理委员会颁布的《人工智能标准化白皮书》对人工智能学科的基本思想和内容作出了解释。认为人工智能应该是围绕智能活动而构造的人工系统,是一项知识的工程,是机器模仿人类利用知识完成一定行为的过程。
相对来说我国的人工智能的起步还是较晚,人工智能的发展阶段可以分为三个阶段,第一阶段是从20世纪50年代—80年代,在这一阶段人工智能刚诞生,但由于很多事物不能形式化表达,建立的模型存在一定的局限性。第二阶段是从20世纪80年代—90年代,专家系统得到快速发展,数学模型有重大突破,但由于专家系统在知识获取等方面的不足,人工智能的发展又一次进入低谷期。第三阶段是从21世纪初—至今,随着大数据的积聚、理论算法的革新、计算能力的提升,人工智能在很多应用领域取得了突破性进展, 迎来了又一个繁荣时期。
根据人工智能的发展定义,以及国家颁布的《人工智能白皮书》,人工智能可以分为两种,强人工智能和弱人工智能。
弱人工智能是并不能真正实现推理和解决问题的智能机器,这些机器表面看像是智能的,但是并不真正拥有智能,也不会有自主意识。但是这仍是目前的主流研究仍然集中于弱人工智能,并取得了显著进步,如语音识别、图像处理和物体分割、机器翻译等方面取得了重大突破,甚至可以接近或超越人类水平。
强人工智能是真正能思维的智能机器,并且认为这样的机器是有知觉的和 自我意识的,这类机器可分为类人与非类人两大类。从一般意义来说,达到人类水平的、能够自适应地应对外界环境挑战的、 具有自我意识的人工智能称为“通用人工智能”、“强人工智能”或“类人智能”
一般来说,在我们认为强人工智能的时代已经来临,只是尚未流行起来,但这时候,却还有一些有意思的观点,他们持反对的声音,认为人工不智能或者说是人工智障。
他们认为当我们在开车的时候,大脑在飞速的处理各种信息:交通信号、标志物、路面的井盖、积水;看到马路中央有一只狗在过马路时,我们会踩刹车;看到中央有一只鸟,我们会判断鸟会快速飞走,不用减速;如果是塑料袋,我们可以直接压过去;如果是大石头,我们就需要避让。这些都是我们通过经验的累积以及生活常识构成的。但是,人工智能却做不到这些。
目前人们所研究的人工智能是“狭义”人工智能。“真正的”人工智能需要能够理解食物之间的因果关系,比如警方在路上设置的锥标,哪怕是倒了,或是被压扁了,也要能够被识别出来。但目前的图形识别能力,哪怕是把障碍物换个角度,计算机识别起来都会很困难。而“狭义”人工智能走的是机器学习路线,换句话说,计算机会把路上所有物体(包括够、其他车辆、标志物、行人、塑料袋、石头等)都简单的看做是障碍物,同时计算和预测这些障碍物的移动路线,判断是否会和汽车的路线发生冲突,然后执行相应的动作。
那么问题来了……
当计算机无法理解物体的时候,也就意味着不可能100%准确预测物体的移动轨迹。比如,马路中央的狗。你很难预测它下一秒的位置,即使它目前正在向前狂奔。如果马路中央是一个孩子呢?同时,让计算机识别路边的交通指示牌也是一件十分困难的事情。当指示牌有破损、遮挡物等等,都会影响计算机的识别。
所以,目前的人工智能都属于“狭义”的人工智能,它的核心是基于大数据进行的学习。但在瞬息万变的现实世界里,由于计算机无法真正理解事物的相互关系,因此并不能处理出现的意外情况。
我们可以将无人驾驶分为五个级别:
辅助性自动驾驶(如自动刹车、保持车道、停靠辅助系统等) 满足一定条件下,汽车可以自动驾驶,但需要驾驶员进行实时监控(如特斯拉的自动驾驶技术) 满足一定条件下,汽车可以自动驾驶,驾驶员不需要实时监控,但要随时准备好接管驾驶。 满足一定条件下,可实现无人看管的自动驾驶。 完全实现无人看管的自动驾驶。
就目前来看,我们距离第五个级别的无人驾驶的距离还有非常遥远的一条道路要走,当然这条道路的未来,并没有人会知道是什么样子的。
在我看来,随着技术的发展,人工智能这条道路并非是走不下去的,只是这条道路比较困难,而且并不是说在人工智能完全达到强人工智能的时候才能造福人类,目前人工智能已经用于我们身边的多个领域,并且在不断的帮助我们,我们可以通过人工智能不断的帮助我们完善人工智能,达成一个不断的循环,只是需要很多对数据科学领域感兴趣的人,来不断的完善它们。
希望你看完这篇文章能够有所收获,如果有一些想法,希望可以一起讨论一下,谢谢。
从谷歌大数据中能发现什么规律?得出什么结论?
马克吐温说过:“世上有三种谎言,即谎言,拙劣的谎言和统计数据。”传统的调研方法得出的结论只是调研者希望得到的结论,而不是真实结论。当你拿起笔,开始在调查表上划对勾时,你已经走进调研设计者为你画好的框架之中。跟着调查报告的既定思路走,勾画有限的选项,本能地回避对自己不利的选项。
无论是善意还是恶意,人们面对他人时,总要展露自己优秀的光明面,隐藏拙劣不堪的阴影面。但是,当人们面对屏幕时,往往会放下戒备,吐露心声,甚至还会释放夸张内心的恶魔。这就是为什么会有那么多的键盘侠。
谷歌数据分析家,赛思•斯蒂芬斯-达维多维茨,从屏幕背后的大数据中,得出许多出乎意料的结论。
1、先看一个例子,你猜猜,与失业率高度相关的网络数据是什么?找工,写简历,面试,再教育培训?以上答案都不对。最高相关的数据不是找工,而是一个黄片网站,其次是“蜘蛛纸牌”。知道答案后的你有没有会心一笑?数据说明了真相:有大把时间很无聊的失业人士,把他们的时间花在数据看得见的地方。
2、奈飞让用户列出最想看的片子名单,名单里排列前茅的是评分很高的文化片、经典黑白片、二战纪录片。奈飞按照用户列出的名单给他们提供片源,结果发现点击量很少。用户观看率最高的是低俗喜剧片和爱情片。于是奈飞停止了调查用户喜好,而直接根据点击量提供片源。用奈飞的话来说是,“不要相信用户的语言,看看他们的行为”。
3、除了人类行为外,大数据还发现了什么有用的规律?
反直觉的例子给一个。大多数人都认为很多 NBA 球星出生贫寒。但是大数据说一个出生在富裕地区的黑孩子进入 NBA 的机率是出生在贫穷地区的黑孩子的 2 倍。白孩子则高出60%。中产阶级的孩子更容易进入 NBA 的原因有二,儿时生活条件好,长得高,身体素质好,平均身高2米,美国男人平均1米75。其二是情商稳定,从小培养的信任感,自律,毅力,专注度和组织性。迈克尔乔丹 12 岁时因斗殴被学校开除后,乔妈妈每天带着他上班,囿限他于停车场的车里看书。在乔丹效力芝加哥公牛队后,父母和表兄经常探访他以避免他被名誉和金钱诱惑。与乔丹拥有相仿的天赋的天才选手 doug wrenn 出生西雅图贫寒社区单亲家庭,在康乃狄克州大学队,他挑衅队友嘲弄教练商店偷鞋被开除。华盛顿大学给了他第二次机会,他依然不能相容于团队,NBA 落选了。不像直觉告诉我们的底层孩子在天堂地狱之间搏斗时有常人未有的力量,这些有天赋有热情的 NBA 种子选手缺少成为巨星的性格。
面对键盘,人们愿意坦白自己奇怪的行为想法并求助经验人士的帮助,匿名的网络无需承担同样事件暴露在现实生活中产生的后果。谷歌数据的力量在于用户告诉谷歌他们不愿意告诉别人的秘密。
赛思•斯蒂芬斯-达维多维茨写了一本书,总结谷歌大数据结论,叫做《人人都在说谎》。书内有很多有趣的例子,作者通过数据分析,得出各种各样的结论:美国有多少人是 gay,广告起到作用了吗,传媒有偏见吗,哪里的人会偷税漏税,名校对人有多大影响,你能战胜股市吗,哪个地方最适合养小孩。
为了震撼读者,书中有些例子太偏激。不过,没有立场的文章没意思,这本书值得看一看。你能看到很多跟你预期不一样的大数据答案。
结语:以上就是首席CTO笔记为大家整理的关于大数据的幕后推手是哪个定律的全部内容了,感谢您花时间阅读本站内容,希望对您有所帮助,更多关于大数据的幕后推手是哪个定律的相关内容别忘了在本站进行查找喔。