「测试开发全栈化-Go」(1) Go语言基本了解
作为一个测试,作为一个测试开发, 全栈化+管理 是我们未来的发展方向。已经掌握了Java、Python、HTML的你,是不是也想了解下最近异常火爆的Go语言呢?来吧,让我们一起了解下。
Go 是一个开源的编程语言 ,它能让构造简单、可靠且高效的软件变得容易。
Go是从2007年末由Robert Griesemer, Rob Pike, Ken Thompson主持开发,后来还加入了Ian Lance Taylor, Russ Cox等人,并最终于2009年11月开源,在2012年早些时候发布了Go 1稳定版本。现在Go的开发已经是完全开放的,并且拥有一个活跃的社区。这三个人都是计算机界的大神,有的参与了C语言的编写,有的还是数学大神,有的还获得了计算机最高荣誉-图灵奖。
接下来说说 Go语言的特色 :
简洁、快速、安全
并行、有趣、开源
内存管理、数组安全、编译迅速
Go语言的用途 :
Go 语言被设计成一门应用于搭载 Web 服务器,存储集群或类似用途的巨型中央服务器的系统编程语言。
对于高性能分布式系统领域而言,Go 语言无疑比大多数其它语言有着更高的开发效率。它提供了海量并行的支持,这对于 游戏 服务端的开发而言是再好不过了。
Go语言的环境安装:
建议直接打开 官方地址因为墙的原因打不开
因为我用的是windows系统,这里主要讲下Windows系统上使用Go语言来编程。
Windows 下可以使用 .msi 后缀(在下载列表中可以找到该文件,如go1.17.2.windows-amd64.msi)的安装包来安装。
默认情况下 .msi 文件会安装在 c:Go 目录下。你可以将 c:Gobin 目录添加到 Path 环境变量中。添加后你需要重启命令窗口才能生效。个人建议还是安装到 Program Files文件夹中。
使用什么开发工具来对Go语言进行编写:
个人建议用VS code, 也可以用Sublime Text来编辑。如果你之前看了我讲的HTML语言的学习,肯定已经下载了VS code. 那么这时你需要在VS code中下载Go语言的扩展插件。
这里有一个巨大的坑,就是在下载Go的插件和依赖包时,会提示一些包没有。主要是因为下载的依赖包部分被墙了,只能想别的办法去下载。
建议参考网页:
解决vscode中golang插件安装失败方法
在学习go的过程中,使用的是vscode,但是一直提示安装相关插件失败,然后上网查方法,基本上是叫你建立golang.org目录什么的,结果全是错的,而且都是抄袭,很烦。无意之中看到一位博主分享的方法,他也是饱受上述的垃圾博文困扰,然后找到了解决方法,这里向他致敬,秉着让更多人看到正确解决方法的心,我写下正确的解决方法,希望对你有所帮助,也可以点开原博主链接参考:
Go有一个全球模块代理,设置代理再去安装golang的插件,就可以安装成功了。步骤有,首先Windows用户打开Powershell,一个蓝色的界面,注意不是cmd!不知道的直接打开window下面的搜索,然后输入powershell,搜索出来就可以了。
$env:GO111MODULE=“on”
$env:GOPROXY=“”
go env -w GOPROXY=
go env -w GOPRIVATE=*.corp.example.com
然后我们打开VsCode界面,下面会提示安装插件,我们选择Install ALL,就会安装成功
当你在运行Go语言程序时,提示所有的插件包都已经安装成功了时,就可以正常使用了,要不然一堆报错会让你非常心烦。
好了,今天先到这里,晚安、下班~
golang 有哪些比较稳定的 web 开发框架
第一个:Beego框架
Beego框架是astaxie的GOWeb开发的开源框架。Beego框架最大的特点是由八个大的基础模块组成,八大基础模块的特点是可以根据自己的需要进行引入,模块相互独立,模块之间耦合性低。
相应的Beego的缺点就是全部使用时比较臃肿,通过bee工具来构建项目时,直接生成项目目录和耦合关系,从而会导致在项目开发过程中受制性较大。
第二个:Gin框架
Gin是一个GOlang的微框架,封装比较优雅,API友好,源码注释比较明确,已经发布了1.0版本;具有快速灵活、容错方便等特点,其实对于golang而言,web框架的依赖远比Python、Java更小。
目前在很多使用golang的中小型公司中进行业务开发,使用Gin框架的很多,大家如果想使用golang进行熟练Web开发,可以多关注一下这个框架。
第三个:Iris框架
Iris框架在其官方网站上被描述为GO开发中最快的Web框架,并给出了多框架和多语言之前的性能对比。目前在github上,Iris框架已经收获了14433个star和1493个fork,可见是非常受欢迎的。
在实际开发中,Iris框架与Gin框架的学习曲线几乎相同,所以掌握了Gin就可以轻松掌握Iris框架。
第四个:Echo框架
也是golang的微型Web框架,其具备快速HTTP路由器、支持扩展中间件,同时还支持静态文件服务、Websocket以及支持制定绑定函数,制定相应渲染函数,并允许使用任意的HTML模版引擎。
如何学习GO语言?
Go语言也称 Golang,兼具效率、性能、安全、健壮等特性。这套Go语言教程(Golang教程)通俗易懂,深入浅出,既适合没有基础的读者快速入门,也适合工作多年的程序员查阅知识点。
这套教程在讲解一些知识点时,将 Go 语言和其他多种语言进行对比,让掌握其它编程语言的读者能迅速理解 Go 语言的特性。Go语言从底层原生支持并发,无须第三方库、开发者的编程技巧和开发经验就可以轻松搞定。
Go语言(或 Golang)起源于 2007 年,并在 2009 年正式对外发布。Go 是非常年轻的一门语言,它的主要目标是“兼具 Python 等动态语言的开发速度和 C/C++ 等编译型语言的性能与安全性”。
Go语言是编程语言设计的又一次尝试,是对类C语言的重大改进,它不但能让你访问底层操作系统,还提供了强大的网络编程和并发编程支持。Go语言的用途众多,可以进行网络编程、系统编程、并发编程、分布式编程。
Go语言的推出,旨在不损失应用程序性能的情况下降低代码的复杂性,具有“部署简单、并发性好、语言设计良好、执行性能好”等优势,目前国内诸多 IT 公司均已采用Go语言开发项目。Go语言有时候被描述为“C 类似语言”,或者是“21 世纪的C语言”。Go 从C语言继承了相似的表达式语法、控制流结构、基础数据类型、调用参数传值、指针等很多思想,还有C语言一直所看中的编译后机器码的运行效率以及和现有操作系统的无缝适配。
因为Go语言没有类和继承的概念,所以它和 Java 或 C++ 看起来并不相同。但是它通过接口(interface)的概念来实现多态性。Go语言有一个清晰易懂的轻量级类型系统,在类型之间也没有层级之说。因此可以说Go语言是一门混合型的语言。
此外,很多重要的开源项目都是使用Go语言开发的,其中包括 Docker、Go-Ethereum、Thrraform 和 Kubernetes。Go 是编译型语言,Go 使用编译器来编译代码。编译器将源代码编译成二进制(或字节码)格式;在编译代码时,编译器检查错误、优化性能并输出可在不同平台上运行的二进制文件。要创建并运行 Go 程序,程序员必须执行如下步骤。
使用文本编辑器创建 Go 程序;
保存文件;编译程序;运行编译得到的可执行文件。
这不同于 Python、Ruby 和 JavaScript 等语言,它们不包含编译步骤。Go 自带了编译器,因此无须单独安装编译器。
链乔教育在线旗下学硕创新区块链技术工作站是中国教育部学校规划建设发展中心开展的“智慧学习工场2020-学硕创新工作站 ”唯一获准的“区块链技术专业”试点工作站。专业站立足为学生提供多样化成长路径,推进专业学位研究生产学研结合培养模式改革,构建应用型、复合型人才培养体系。
(十一)golang 内存分析
编写过C语言程序的肯定知道通过malloc()方法动态申请内存,其中内存分配器使用的是glibc提供的ptmalloc2。 除了glibc,业界比较出名的内存分配器有Google的tcmalloc和Facebook的jemalloc。二者在避免内存碎片和性能上均比glic有比较大的优势,在多线程环境中效果更明显。
Golang中也实现了内存分配器,原理与tcmalloc类似,简单的说就是维护一块大的全局内存,每个线程(Golang中为P)维护一块小的私有内存,私有内存不足再从全局申请。另外,内存分配与GC(垃圾回收)关系密切,所以了解GC前有必要了解内存分配的原理。
为了方便自主管理内存,做法便是先向系统申请一块内存,然后将内存切割成小块,通过一定的内存分配算法管理内存。 以64位系统为例,Golang程序启动时会向系统申请的内存如下图所示:
预申请的内存划分为spans、bitmap、arena三部分。其中arena即为所谓的堆区,应用中需要的内存从这里分配。其中spans和bitmap是为了管理arena区而存在的。
arena的大小为512G,为了方便管理把arena区域划分成一个个的page,每个page为8KB,一共有512GB/8KB个页;
spans区域存放span的指针,每个指针对应一个page,所以span区域的大小为(512GB/8KB)乘以指针大小8byte = 512M
bitmap区域大小也是通过arena计算出来,不过主要用于GC。
span是用于管理arena页的关键数据结构,每个span中包含1个或多个连续页,为了满足小对象分配,span中的一页会划分更小的粒度,而对于大对象比如超过页大小,则通过多页实现。
根据对象大小,划分了一系列class,每个class都代表一个固定大小的对象,以及每个span的大小。如下表所示:
上表中每列含义如下:
class: class ID,每个span结构中都有一个class ID, 表示该span可处理的对象类型
bytes/obj:该class代表对象的字节数
bytes/span:每个span占用堆的字节数,也即页数乘以页大小
objects: 每个span可分配的对象个数,也即(bytes/spans)/(bytes/obj)waste
bytes: 每个span产生的内存碎片,也即(bytes/spans)%(bytes/obj)上表可见最大的对象是32K大小,超过32K大小的由特殊的class表示,该class ID为0,每个class只包含一个对象。
span是内存管理的基本单位,每个span用于管理特定的class对象, 跟据对象大小,span将一个或多个页拆分成多个块进行管理。src/runtime/mheap.go:mspan定义了其数据结构:
以class 10为例,span和管理的内存如下图所示:
spanclass为10,参照class表可得出npages=1,nelems=56,elemsize为144。其中startAddr是在span初始化时就指定了某个页的地址。allocBits指向一个位图,每位代表一个块是否被分配,本例中有两个块已经被分配,其allocCount也为2。next和prev用于将多个span链接起来,这有利于管理多个span,接下来会进行说明。
有了管理内存的基本单位span,还要有个数据结构来管理span,这个数据结构叫mcentral,各线程需要内存时从mcentral管理的span中申请内存,为了避免多线程申请内存时不断的加锁,Golang为每个线程分配了span的缓存,这个缓存即是cache。src/runtime/mcache.go:mcache定义了cache的数据结构
alloc为mspan的指针数组,数组大小为class总数的2倍。数组中每个元素代表了一种class类型的span列表,每种class类型都有两组span列表,第一组列表中所表示的对象中包含了指针,第二组列表中所表示的对象不含有指针,这么做是为了提高GC扫描性能,对于不包含指针的span列表,没必要去扫描。根据对象是否包含指针,将对象分为noscan和scan两类,其中noscan代表没有指针,而scan则代表有指针,需要GC进行扫描。mcache和span的对应关系如下图所示:
mchache在初始化时是没有任何span的,在使用过程中会动态的从central中获取并缓存下来,跟据使用情况,每种class的span个数也不相同。上图所示,class 0的span数比class1的要多,说明本线程中分配的小对象要多一些。
cache作为线程的私有资源为单个线程服务,而central则是全局资源,为多个线程服务,当某个线程内存不足时会向central申请,当某个线程释放内存时又会回收进central。src/runtime/mcentral.go:mcentral定义了central数据结构:
lock: 线程间互斥锁,防止多线程读写冲突
spanclass : 每个mcentral管理着一组有相同class的span列表
nonempty: 指还有内存可用的span列表
empty: 指没有内存可用的span列表
nmalloc: 指累计分配的对象个数线程从central获取span步骤如下:
将span归还步骤如下:
从mcentral数据结构可见,每个mcentral对象只管理特定的class规格的span。事实上每种class都会对应一个mcentral,这个mcentral的集合存放于mheap数据结构中。src/runtime/mheap.go:mheap定义了heap的数据结构:
lock: 互斥锁
spans: 指向spans区域,用于映射span和page的关系
bitmap:bitmap的起始地址
arena_start: arena区域首地址
arena_used: 当前arena已使用区域的最大地址
central: 每种class对应的两个mcentral
从数据结构可见,mheap管理着全部的内存,事实上Golang就是通过一个mheap类型的全局变量进行内存管理的。mheap内存管理示意图如下:
系统预分配的内存分为spans、bitmap、arean三个区域,通过mheap管理起来。接下来看内存分配过程。
针对待分配对象的大小不同有不同的分配逻辑:
(0, 16B) 且不包含指针的对象: Tiny分配
(0, 16B) 包含指针的对象:正常分配
[16B, 32KB] : 正常分配
(32KB, -) : 大对象分配其中Tiny分配和大对象分配都属于内存管理的优化范畴,这里暂时仅关注一般的分配方法。
以申请size为n的内存为例,分配步骤如下:
Golang内存分配是个相当复杂的过程,其中还掺杂了GC的处理,这里仅仅对其关键数据结构进行了说明,了解其原理而又不至于深陷实现细节。1、Golang程序启动时申请一大块内存并划分成spans、bitmap、arena区域
2、arena区域按页划分成一个个小块。
3、span管理一个或多个页。
4、mcentral管理多个span供线程申请使用
5、mcache作为线程私有资源,资源来源于mcentral。
golang之大端序、小端序
当分别处于大小端模式下的内容存放如下
(1)大端模式存储(存储地址为16位)
地址 数据
0x0004(高地址) 0x44
0x0003 0x33
0x0002 0x22
0x0001(低地址) 0x11
(2)小端模式存储(存储地址为16位)
地址 数据
0x0004(高地址) 0x11
0x0003 0x22
0x0002 0x33
0x0001(低地址) 0x44
在前面也简单阐述了大小端序的定义并结合简单实例来说明,接下来会给出详细实例来说明:
1、大端序(Big-Endian):或称大尾序
一个类型: int32 的数 0X0A0B0C0D的内存存放情况
数据是以8bits为单位
2、小端序(little-endian):或称小尾序
比如0x00000001
大端序:内存低比特位 00000000 00000000 00000000 00000001 内存高比特位
小端序:内存低比特位 10000000 00000000 00000000 00000000 内存高比特位
其实在前面罗列出那么东西,最终是为了接下来讲述的在golang中涉及到网络传输、文件存储时的选择。一般来说网络传输的字节序,可能是大端序或者小端序,取决于软件开始时通讯双方的协议规定。TCP/IP协议RFC1700规定使用“大端”字节序为网络字节序,开发的时候需要遵守这一规则。默认golang是使用大端序。详情见golang中包encoding/binary已提供了大、小端序的使用
输出结果:
16909060 use big endian:
int32 to bytes: [1 2 3 4] ### [0001 0002 0003 0004]
bytes to int32: 16909060
16909060 use little endian:
int32 to bytes: [4 3 2 1] ### [0004 0003 0002 0001]
bytes to int32: 16909060
在RPCX框架中关于RPC调用过程涉及的传递消息进行编码的,采用的就是大端序模式