导读:很多朋友问到关于人工智能cnn什么意思的相关问题,本文首席CTO笔记就来为大家做个详细解答,供大家参考,希望对大家有所帮助!一起来看看吧!
一文看懂卷积神经网络-CNN(基本原理+独特价值+实际应用)
在 CNN 出现之前,图像对于人工智能来说是一个难题,有2个原因:
图像需要处理的数据量太大,导致成本很高,效率很低
图像在数字化的过程中很难保留原有的特征,导致图像处理的准确率不高
下面就详细说明一下这2个问题:
图像是由像素构成的,每个像素又是由颜色构成的。
现在随随便便一张图片都是 1000×1000 像素以上的, 每个像素都有RGB 3个参数来表示颜色信息。
假如我们处理一张 1000×1000 像素的图片,我们就需要处理3百万个参数!
1000×1000×3=3,000,000
这么大量的数据处理起来是非常消耗资源的,而且这只是一张不算太大的图片!
卷积神经网络 – CNN 解决的第一个问题就是「将复杂问题简化」,把大量参数降维成少量参数,再做处理。
更重要的是:我们在大部分场景下,降维并不会影响结果。比如1000像素的图片缩小成200像素,并不影响肉眼认出来图片中是一只猫还是一只狗,机器也是如此。
图片数字化的传统方式我们简化一下,就类似下图的过程:
假如有圆形是1,没有圆形是0,那么圆形的位置不同就会产生完全不同的数据表达。但是从视觉的角度来看, 图像的内容(本质)并没有发生变化,只是位置发生了变化 。
所以当我们移动图像中的物体,用传统的方式的得出来的参数会差异很大!这是不符合图像处理的要求的。
而 CNN 解决了这个问题,他用类似视觉的方式保留了图像的特征,当图像做翻转,旋转或者变换位置时,它也能有效的识别出来是类似的图像。
那么卷积神经网络是如何实现的呢?在我们了解 CNN 原理之前,先来看看人类的视觉原理是什么?
深度学习的许多研究成果,离不开对大脑认知原理的研究,尤其是视觉原理的研究。
1981 年的诺贝尔医学奖,颁发给了 David Hubel(出生于加拿大的美国神经生物学家) 和TorstenWiesel,以及 Roger Sperry。前两位的主要贡献,是“ 发现了视觉系统的信息处理 ”,可视皮层是分级的。
人类的视觉原理如下:从原始信号摄入开始(瞳孔摄入像素 Pixels),接着做初步处理(大脑皮层某些细胞发现边缘和方向),然后抽象(大脑判定,眼前的物体的形状,是圆形的),然后进一步抽象(大脑进一步判定该物体是只气球)。下面是人脑进行人脸识别的一个示例:
对于不同的物体,人类视觉也是通过这样逐层分级,来进行认知的:
我们可以看到,在最底层特征基本上是类似的,就是各种边缘,越往上,越能提取出此类物体的一些特征(轮子、眼睛、躯干等),到最上层,不同的高级特征最终组合成相应的图像,从而能够让人类准确的区分不同的物体。
那么我们可以很自然的想到:可以不可以模仿人类大脑的这个特点,构造多层的神经网络,较低层的识别初级的图像特征,若干底层特征组成更上一层特征,最终通过多个层级的组合,最终在顶层做出分类呢?
答案是肯定的,这也是许多深度学习算法(包括CNN)的灵感来源。
典型的 CNN 由3个部分构成:
卷积层
池化层
全连接层
如果简单来描述的话:
卷积层负责提取图像中的局部特征;池化层用来大幅降低参数量级(降维);全连接层类似传统神经网络的部分,用来输出想要的结果。
下面的原理解释为了通俗易懂,忽略了很多技术细节,如果大家对详细的原理感兴趣,可以看这个视频《 卷积神经网络基础 》。
卷积层的运算过程如下图,用一个卷积核扫完整张图片:
这个过程我们可以理解为我们使用一个过滤器(卷积核)来过滤图像的各个小区域,从而得到这些小区域的特征值。
在具体应用中,往往有多个卷积核,可以认为,每个卷积核代表了一种图像模式,如果某个图像块与此卷积核卷积出的值大,则认为此图像块十分接近于此卷积核。如果我们设计了6个卷积核,可以理解:我们认为这个图像上有6种底层纹理模式,也就是我们用6中基础模式就能描绘出一副图像。以下就是25种不同的卷积核的示例:
总结:卷积层的通过卷积核的过滤提取出图片中局部的特征,跟上面提到的人类视觉的特征提取类似。
池化层简单说就是下采样,他可以大大降低数据的维度。其过程如下:
上图中,我们可以看到,原始图片是20×20的,我们对其进行下采样,采样窗口为10×10,最终将其下采样成为一个2×2大小的特征图。
之所以这么做的原因,是因为即使做完了卷积,图像仍然很大(因为卷积核比较小),所以为了降低数据维度,就进行下采样。
总结:池化层相比卷积层可以更有效的降低数据维度,这么做不但可以大大减少运算量,还可以有效的避免过拟合。
这个部分就是最后一步了,经过卷积层和池化层处理过的数据输入到全连接层,得到最终想要的结果。
经过卷积层和池化层降维过的数据,全连接层才能”跑得动”,不然数据量太大,计算成本高,效率低下。
典型的 CNN 并非只是上面提到的3层结构,而是多层结构,例如 LeNet-5 的结构就如下图所示:
卷积层 – 池化层- 卷积层 – 池化层 – 卷积层 – 全连接层
在了解了 CNN 的基本原理后,我们重点说一下 CNN 的实际应用有哪些。
卷积神经网络 – CNN 很擅长处理图像。而视频是图像的叠加,所以同样擅长处理视频内容。下面给大家列一些比较成熟的应用�:
图像分类、检索
图像分类是比较基础的应用,他可以节省大量的人工成本,将图像进行有效的分类。对于一些特定领域的图片,分类的准确率可以达到 95%+,已经算是一个可用性很高的应用了。
典型场景:图像搜索…
目标定位检测
可以在图像中定位目标,并确定目标的位置及大小。
典型场景:自动驾驶、安防、医疗…
目标分割
简单理解就是一个像素级的分类。
他可以对前景和背景进行像素级的区分、再高级一点还可以识别出目标并且对目标进行分类。
典型场景:美图秀秀、视频后期加工、图像生成…
人脸识别
人脸识别已经是一个非常普及的应用了,在很多领域都有广泛的应用。
典型场景:安防、金融、生活…
骨骼识别
骨骼识别是可以识别身体的关键骨骼,以及追踪骨骼的动作。
典型场景:安防、电影、图像视频生成、游戏…
今天我们介绍了 CNN 的价值、基本原理和应用场景,简单总结如下:
CNN 的价值:
能够将大数据量的图片有效的降维成小数据量(并不影响结果)
能够保留图片的特征,类似人类的视觉原理
CNN 的基本原理:
卷积层 – 主要作用是保留图片的特征
池化层 – 主要作用是把数据降维,可以有效的避免过拟合
全连接层 – 根据不同任务输出我们想要的结果
CNN 的实际应用:
图片分类、检索
目标定位检测
目标分割
人脸识别
骨骼识别
本文首发在 easyAI - 人工智能知识库
《 一文看懂卷积神经网络-CNN(基本原理+独特价值+实际应用) 》
cnn全称是什么?
CNN的全称是Convolutional Neural Network,是一种前馈神经网络。由一个或多个卷积层、池化层以及顶部的全连接层组成,在图像处理领域表现出色。本文主要讲解CNN如何在自然语言处理方面的运用。
卷积神经网络主要用于提取卷积对象的局部特征,当卷积对象是自然语言文本时,比如一个句子,此时其局部特征是特定的关键词或关键短语,所以利用卷积神经网络作为特征提取器时相当于词袋模型,表示一个句子中是否出现过特定的关键词或关键短语。用在分类任务上,相当于提取出对于分类最有用的特征信息。
cnn简介:
现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。
在图像处理中,往往把图像表示为像素的向量,比如一个1000×1000的图像,可以表示为一个1000000的向量。在上一节中提到的神经网络中,如果隐含层数目与输入层一样,即也是1000000时。
以上内容参考:百度百科-卷积神经网络
AI人工智能-CNN概念轻松入门
假设给定一张图(可能是字母X或者字母O),通过CNN即可识别出是X还是O,如下图所示,那怎么做到的呢
如果采用经典的神经网络模型,则需要读取整幅图像作为神经网络模型的输入(即全连接的方式),当图像的尺寸越大时,其连接的参数将变得很多,从而导致计算量非常大。
而我们人类对外界的认知一般是从局部到全局,先对局部有感知的认识,再逐步对全体有认知,这是人类的认识模式。在图像中的空间联系也是类似,局部范围内的像素之间联系较为紧密,而距离较远的像素则相关性较弱。因而,每个神经元其实没有必要对全局图像进行感知,只需要对局部进行感知,然后在更高层将局部的信息综合起来就得到了全局的信息。这种模式就是卷积神经网络中降低参数数目的重要神器:局部感受野。
如果字母X、字母O是固定不变的,那么最简单的方式就是图像之间的像素一一比对就行,但在现实生活中,字体都有着各个形态上的变化(例如手写文字识别),例如平移、缩放、旋转、微变形等等,如下图所示:
我们的目标是对于各种形态变化的X和O,都能通过CNN准确地识别出来,这就涉及到应该如何有效地提取特征,作为识别的关键因子。
回想前面讲到的“局部感受野”模式,对于CNN来说,它是一小块一小块地来进行比对,在两幅图像中大致相同的位置找到一些粗糙的特征(小块图像)进行匹配,相比起传统的整幅图逐一比对的方式,CNN的这种小块匹配方式能够更好的比较两幅图像之间的相似性。如下图:
以字母X为例,可以提取出三个重要特征(两个交叉线、一个对角线),如下图所示:
假如以像素值"1"代表白色,像素值"-1"代表黑色,则字母X的三个重要特征如下:
那么这些特征又是怎么进行匹配计算呢?(不要跟我说是像素进行一一匹配的,汗!)
这时就要请出今天的重要嘉宾:卷积。那什么是卷积呢,不急,下面慢慢道来。
当给定一张新图时,CNN并不能准确地知道这些特征到底要匹配原图的哪些部分,所以它会在原图中把每一个可能的位置都进行尝试,相当于把这个feature(特征)变成了一个过滤器。这个用来匹配的过程就被称为卷积操作,这也是卷积神经网络名字的由来。
卷积的操作如下图所示:
是不是很像把毛巾沿着对角卷起来,下图形象地说明了为什么叫「卷」积
在本案例中,要计算一个feature(特征)和其在原图上对应的某一小块的结果,只需将两个小块内对应位置的像素值进行乘法运算,然后将整个小块内乘法运算的结果累加起来,最后再除以小块内像素点总个数即可(注:也可不除以总个数的)。
如果两个像素点都是白色(值均为1),那么1 1 = 1,如果均为黑色,那么(-1) (-1) = 1,也就是说,每一对能够匹配上的像素,其相乘结果为1。类似地,任何不匹配的像素相乘结果为-1。具体过程如下(第一个、第二个……、最后一个像素的匹配结果):
根据卷积的计算方式,第一块特征匹配后的卷积计算如下,结果为1
对于其它位置的匹配,也是类似(例如中间部分的匹配)
计算之后的卷积如下
以此类推,对三个特征图像不断地重复着上述过程,通过每一个feature(特征)的卷积操作,会得到一个新的二维数组,称之为feature map。其中的值,越接近1表示对应位置和feature的匹配越完整,越是接近-1,表示对应位置和feature的反面匹配越完整,而值接近0的表示对应位置没有任何匹配或者说没有什么关联。如下图所示:
可以看出,当图像尺寸增大时,其内部的加法、乘法和除法操作的次数会增加得很快,每一个filter的大小和filter的数目呈线性增长。由于有这么多因素的影响,很容易使得计算量变得相当庞大。
为了有效地减少计算量,CNN使用的另一个有效的工具被称为“池化(Pooling)”。池化就是将输入图像进行缩小,减少像素信息,只保留重要信息。
池化的操作也很简单,通常情况下,池化区域是2 2大小,然后按一定规则转换成相应的值,例如取这个池化区域内的最大值(max-pooling)、平均值(mean-pooling)等,以这个值作为结果的像素值。
下图显示了左上角2 2池化区域的max-pooling结果,取该区域的最大值max(0.77,-0.11,-0.11,1.00),作为池化后的结果,如下图:
池化区域往左,第二小块取大值max(0.11,0.33,-0.11,0.33),作为池化后的结果,如下图:
其它区域也是类似,取区域内的最大值作为池化后的结果,最后经过池化后,结果如下:
对所有的feature map执行同样的操作,结果如下:
最大池化(max-pooling)保留了每一小块内的最大值,也就是相当于保留了这一块最佳的匹配结果(因为值越接近1表示匹配越好)。也就是说,它不会具体关注窗口内到底是哪一个地方匹配了,而只关注是不是有某个地方匹配上了。
通过加入池化层,图像缩小了,能很大程度上减少计算量,降低机器负载。
常用的激活函数有sigmoid、tanh、relu等等,前两者sigmoid/tanh比较常见于全连接层,后者ReLU常见于卷积层。
回顾一下前面讲的感知机,感知机在接收到各个输入,然后进行求和,再经过激活函数后输出。激活函数的作用是用来加入非线性因素,把卷积层输出结果做非线性映射。
在卷积神经网络中,激活函数一般使用ReLU(The Rectified Linear Unit,修正线性单元),它的特点是收敛快,求梯度简单。计算公式也很简单,max(0,T),即对于输入的负值,输出全为0,对于正值,则原样输出。
下面看一下本案例的ReLU激活函数操作过程:
第一个值,取max(0,0.77),结果为0.77,如下图
第二个值,取max(0,-0.11),结果为0,如下图
以此类推,经过ReLU激活函数后,结果如下:
对所有的feature map执行ReLU激活函数操作,结果如下:
通过将上面所提到的卷积、激活函数、池化组合在一起,就变成下图:
通过加大网络的深度,增加更多的层,就得到了深度神经网络,如下图:
全连接层在整个卷积神经网络中起到“分类器”的作用,即通过卷积、激活函数、池化等深度网络后,再经过全连接层对结果进行识别分类。
首先将经过卷积、激活函数、池化的深度网络后的结果串起来,如下图所示:
由于神经网络是属于监督学习,在模型训练时,根据训练样本对模型进行训练,从而得到全连接层的权重(如预测字母X的所有连接的权重)
在利用该模型进行结果识别时,根据刚才提到的模型训练得出来的权重,以及经过前面的卷积、激活函数、池化等深度网络计算出来的结果,进行加权求和,得到各个结果的预测值,然后取值最大的作为识别的结果(如下图,最后计算出来字母X的识别值为0.92,字母O的识别值为0.51,则结果判定为X)
上述这个过程定义的操作为”全连接层“(Fully connected layers),全连接层也可以有多个,如下图:
将以上所有结果串起来后,就形成了一个“卷积神经网络”(CNN)结构,如下图所示:
综述:卷积神经网络主要由两部分组成,一部分是特征提取(卷积、激活函数、池化),另一部分是分类识别(全连接层),著名的手写文字识别卷积神经网络结构图:
CNN进化历史:
卷积神经网络(CNN)近年来取得了长足的发展,是深度学习中的一颗耀眼明珠。CNN不仅能用来对图像进行分类,还在图像分割(目标检测)任务中有着广泛的应用。CNN已经成为了图像分类的黄金标准,一直在不断的发展和改进。
CNN的起点是神经认知机模型,此时已经出现了卷积结构,经典的LeNet诞生于1998年。然而之后CNN的锋芒开始被SVM等模型盖过。随着ReLU、dropout的提出,以及GPU和大数据带来的历史机遇,CNN在2012年迎来了历史突破:AlexNet。随后几年,CNN呈现爆发式发展,各种CNN模型涌现出来。
CNN的主要演进方向如下:
1、网络结构加深
2、加强卷积功能
3、从分类到检测
4、新增功能模块
下图是CNN几个经典模型(AlexNet、VGG、NIN、GoogLeNet、ResNet)的对比图,可见网络层次越来越深、结构越来越复杂,当然模型效果也是越来越好:
cnn为什么可以在中国使用
中国技术先进。cnn是卷积神经网络,是人工智能研究领域的一部分,最流行的神经网络是深度卷积神经网络,由美国先行研发,但是中国对于此类领域的研究技术要高于美国,比美国更先进,美国为了能够快速发展,将其技术引进中国,所以在中国就可以使用。
结语:以上就是首席CTO笔记为大家介绍的关于人工智能cnn什么意思的全部内容了,希望对大家有所帮助,如果你还想了解更多这方面的信息,记得收藏关注本站。